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Review

Setting Up some Notation:
Data S = {(Xi ,Yi ) ∈ X × {±1} : 1 ≤ i ≤ n} represents learner’s

observed data where X is generated from an unknown
distribution D and Y = f (X ) for some mapping f : X 7→ {±1}.

X = , Y = 1

Output Prediction rule from hypothesis class H which contains certain
mappings from X into {±1}. For instance, truncated linear
functions {x 7→ sign(〈a, x〉) for a ∈ Rd}
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Review

Setting Up some Notation:
Accuracy can be measured by LD(h) = P[h(X ) 6= Y ] which is the
true error rate of a hypothesis h ∈ H. Goal of the learner is try to
minimize this.

Learner does not have enough information to compute the loss!
Instead, estimates it in the most natural way and minimizes that
(considering it’s computationally feasible). This is called expected
risk minimization (ERM):

LS(h) = PS [h(X ) 6= Y ] =
|{i ∈ [n] : h(Xi 6= Yi)}|

n

Intuition Law of Large Numbers ensures that the estimate is close to the
true rate for large enough number of samples.
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Is LLN Enough?

Suppose ĥ ∈ arg min
h∈H

LS(h). We want LD(ĥ) to be small and close

to optimum. It is enough to control sup
h∈H
|LS(h)− LD(h)|:

LD(ĥ) ≤ LS(ĥ) + sup
h∈H
|LS(h)− LD(h)|

≤ LS(h∗) + sup
h∈H
|LS(h)− LD(h)|

≤ LD(h∗) + 2 sup
h∈H
|LS(h)− LD(h)|

Note that LS(h)− LD(h) =
1
n

n∑
i=1

1{h(Xi ) 6=Yi} − PD[h(X ) 6= Y ]

Chernoff’s Inequality controls argument this difference but we
have a sup. This is where Empirical Process Theory kicks in!
Some sort of Uniform Law of Large Number is required...
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h∈H
|LS(h)− LD(h)|

≤ LS(h∗) + sup
h∈H
|LS(h)− LD(h)|

≤ LD(h∗) + 2 sup
h∈H
|LS(h)− LD(h)|

Note that LS(h)− LD(h) =
1
n

n∑
i=1

1{h(Xi ) 6=Yi} − PD[h(X ) 6= Y ]

Chernoff’s Inequality controls argument this difference but we
have a sup. This is where Empirical Process Theory kicks in!
Some sort of Uniform Law of Large Number is required...

Navid Ardeshir Boosting



8/36

Statistical Learning Framework
Boosting

Adaboost

Notation
Chernoff Bound as an Preamble to Concentration Inequalities
Weak V.S. PAC Learning

Chernoff-Hoeffding Bound

Theorem

Let (Zi )1≤i≤n ∈ {0,1}n be the result of n trials of random coin tossing.
Then we have the follwing concentration inequality:

P[|1
n

n∑
i=1

Zi − E[Z1]| ≥ ε] ≤ 2e−2nε2

Remark
The tail bound is asymptotically sharp due to Central Limit Theorem
since tail of a gaussian decays exponentially quadratic.
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Proof

Let p = E[Z1]. Using Markov’s Inequality P[X ≥ α] ≤ α−1E[X ] for a
positive random variable X :

P[
1
n

n∑
i=1

Zi − E[Z1] ≥ ε] = P[eλ(
∑n

i=1 Zi−nE[Z1]) ≥ enλε]

(Markov’x Inequality) ≤ e−nλεE[eλ(
∑n

i=1 Zi−nE[Z1])]

(By Independence) = e−nλε(E[eλ(Z1−E[Z1])])n

= e−nλε(peλ(1−p) + (1− p)e−λp)n

= e−nλε−nλp+n log(1−p+peλ)

(Hoeffsing’s Lemma) ≤ e−nλε+n λ
2

8

(Optmizie over λ ≥ 0) = e−2nε2
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Notions of Learnability

Probably Approximately Correct (PAC) Learnability

A hypothesis class H is called PAC learnable if for every ε, δ,D, and f
which satisfies realizibility assumption provided with enough number
of samples (polynomial function of 1/ε,1/δ) learner can return
hypothesis h ∈ H such that LD(h) ≤ ε holds with probability at least
1− δ.

γ-Weak-Learnability

A hypothesis class H is called γ-Weak-learnable if for every δ,D, and
f which satisfies realizibility assumption provided with enough number
of samples (polynomial function of 1/δ) learner can return hypothesis
h ∈ H such that LD(h) ≤ 1/2− γ holds with probability at least 1− δ.

Navid Ardeshir Boosting
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Notions of Learnability

Learner
((Xi ,Yi ))1≤i≤n

ε, δ
h ∈ H

Weak Learner
((Xi ,Yi ))1≤i≤n

δ
h ∈ H

D

Navid Ardeshir Boosting



13/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Outline

1 Statistical Learning Framework
Notation
Chernoff Bound as an Preamble to Concentration Inequalities
Weak V.S. PAC Learning

2 Boosting
PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

3 Adaboost
Introduction to Adaboost
Resistance to Overfitting

Navid Ardeshir Boosting



14/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Is PAC Learning Stronger Than Weak Learning?

Suppose hypothesis class H is γ Weak learnable. Denote,
A = [Yih(XI)]i,h then for every p ∈ 4([n]) there exists h ∈ H such
that:

n∑
i=1

pi1{h(Xi )6=Yi} ≤
1
2
− γ

~�
p>Aeh =

n∑
i=1

piYih(Xi ) ≥ 2γ~�
min

p∈4([n])
max
h∈H

p>Aeh ≥ 2γ

Navid Ardeshir Boosting
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Existence of an Ideal Booster

If we assume H is finite then this can be considered as a zero-sum
game between learner and booster. By Von Neumann’s Minimax
Theorem:

Booster’s Strategy

min
p∈4([n])

max
h∈H

p> A eh = max
w∈4(H)

min
i∈[n]

e>i A w

(Learner’s) Payoff Matrix
Learner’s Strategy

Navid Ardeshir Boosting



15/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Existence of an Ideal Booster

If we assume H is finite then this can be considered as a zero-sum
game between learner and booster. By Von Neumann’s Minimax
Theorem:

Booster’s Strategy

min
p∈4([n])

max
h∈H

p> A eh = max
w∈4(H)

min
i∈[n]

e>i A w

(Learner’s) Payoff Matrix

Learner’s Strategy

Navid Ardeshir Boosting



15/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Existence of an Ideal Booster

If we assume H is finite then this can be considered as a zero-sum
game between learner and booster. By Von Neumann’s Minimax
Theorem:

Booster’s Strategy

min
p∈4([n])

max
h∈H

p> A eh = max
w∈4(H)

min
i∈[n]

e>i A w

(Learner’s) Payoff Matrix
Learner’s Strategy

Navid Ardeshir Boosting



16/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Existence Continued

Preceeding argument implies existence of a weighted majority vote
classifier which has zero training error.

max
w∈4(H)

min
i∈[n]

e>i Aw ≥ 2γ > 0~�
∀i ∈ [n] Yi (

∑
h∈H

w∗h h(Xi )) > 0

Is it computationally tractable to find g(X ) = sign(
∑
h∈H

w∗h h(X )),

though? How should we find the weights?

Navid Ardeshir Boosting
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Roadmap

It is promising to learn about Booster’s Minimax strategy by
playing the game multiple times and learn from your mistakes.

The idea is to change the effective distribution p ∈ 4([n])
(Booster’s strategy) at each round so that we can trick the
learner into spreading out the error.
Now by taking a majority vote over the hypotheses produced by
Weak learner we can make training error zero!
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Boosting Repeated Game

Initialize: s0 = 0 ∈ Rn

For t = 1, · · · ,T :
1- Booster picks a strategy pt ∈ 4([n]).
2- Weak learner picks zt ∈ {±1}n where zt,i = Yiht(Xi) which satisfies

p>t zt ≥ 2γ.
3- Update state st = st−1 + zt .

Final majority vote rule is g(X ) = sign(
T∑

t=1

ht (X )).

Loss for Booster is RHS and his Goal is to minimize training error
(make it zero):

n∑
i=1

1{g(Xi ) 6=Yi} =
n∑

i=1

1{sT ,i≤0} ≤
n∑

i=1

e−ηsT ,i

Navid Ardeshir Boosting
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Analysis

Suppose s is the state after first T − 1 rounds. How should the
Booster choose pT in round T?

Denote, ΛT (s) :=
n∑

i=1

φT (si ) where φT (si ) = e−ηsi . He should

pick p which attains the min below:

ΛT−1(s) := min
p∈4([n])

max
z∈{±1}n

p>z≥2γ

ΛT (s + z)

By the same argument if we assume s is the state after t − 1
rounds of play we can define total incurred loss of the booster as:

Λt−1(s) := min
p∈4([n])

max
z∈{±}n

p>z≥2γ

Λt (s + z)

Navid Ardeshir Boosting
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Value of the Game

The minimum possible total loss ahievable by Booster against an
optimal Learner becomes:

min
p1∈4([n])

max
z1∈{±}n

p>1 z1≥2γ

min
p2∈4([n])

max
z2∈{±}n

p>2 z2≥2γ

· · · min
pT∈4([n])

max
zT∈{±}n

p>T zT≥2γ

ΛT (
T∑

t=1

zt )

Booster tries to make this value less than one in order to obtain
zero training error.
Unfortunately this expression is unwieldy and it’s not clear there
exists an efficient algorithm to compute the best strategy.
Instead, we work with a tractable upper bound.

Navid Ardeshir Boosting
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Toward Decomposition on States

The trick is to somehow rid of intertwined coordinates.

Λt−1(s) = min
p∈4([n])

max
z∈{±1}n

p>z≥2γ

Λt (s + z)

= min
p∈4([n])

max
z∈{±1}n

min
λ≥0

Λt (s + z) + λ(p>z − 2γ)

≤ min
p∈4([n])

min
λ≥0

max
z∈{±1}n

Λt (s + z) + λ(p>z − 2γ)

= min
q∈Rn

+

max
z∈{±1}n

Λt (s + z) + q>(z − 2γ)

Define recursively:

φt−1(si ) := min
qi>0

max
zi∈{±1}

φt (si + zi ) + qi (zi − 2γ)

Navid Ardeshir Boosting
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Claim. ∀t Λt (s) ≤
n∑

i=1

φt (si )

Proof. Backward induction on t :

Λt−1(s) ≤ min
q∈Rn

+

max
z∈{±1}n

Λt (s + z) + q>(z − 2γ)

≤ min
q∈Rn

+

max
z∈{±1}n

n∑
i=1

φt (si + zi ) + qi (zi − 2γ)

=
n∑

i=1

min
qi≥0

max
zi∈{±1}

φt (si + zi ) + qi (zi − 2γ)

=
n∑

i=1

φt−1(si )

Navid Ardeshir Boosting
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Achieving The Bound

φt (si + zi ) + qi (zi − 2γ) is linear in qi

Intersection point achieves the
Minimax.

qi =
φt (si + 1)− φt (si − 1)

2

φt−1(si ) = (
1
2

+γ)φt (si +1)+(
1
2
−γ)φt (si−1)

Navid Ardeshir Boosting



24/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Achieving The Bound

φt (si + zi ) + qi (zi − 2γ) is linear in qi

Intersection point achieves the
Minimax.

qi =
φt (si + 1)− φt (si − 1)

2

φt−1(si ) = (
1
2

+γ)φt (si +1)+(
1
2
−γ)φt (si−1)

Navid Ardeshir Boosting



24/36

Statistical Learning Framework
Boosting

Adaboost

PAC and Weak Learning Equivalence
Schapire’s Boosting Algorithm

Achieving The Bound

φt (si + zi ) + qi (zi − 2γ) is linear in qi

Intersection point achieves the
Minimax.

qi =
φt (si + 1)− φt (si − 1)

2

φt−1(si ) = (
1
2

+γ)φt (si +1)+(
1
2
−γ)φt (si−1)
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Booster’s Strategy

Solution to the recursion formula becomes:

φt (si ) = ((
1
2

+ γ)e−η + (
1
2
− γ)e+η)T−te−ηsi

Thus, we obtain an explicit formula for Booster’s strategy on
round t :

pt,i ∝ qi ∝ e−ηst−1,i

Intuition Booster tries to weigh more on hard samples to force the Weak
learner to learn that sample...
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Suppose Booster plays the proposed strategy and encounters states
s0, s1, · · · , sT .

Claim.
n∑

i=1

φT (sT ,i ) ≤
n∑

i=1

φT−1(sT−1,i ) ≤ · · · ≤
n∑

i=1

φ0(s0,i )
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s0, s1, · · · , sT .

Claim.
n∑

i=1

φT (sT ,i ) ≤
n∑

i=1

φT−1(sT−1,i ) ≤ · · · ≤
n∑

i=1

φ0(s0,i )

Proof.

n∑
i=1

φt−1(st,i ) =
n∑

i=1

min
qi≥0

max
zi∈{±1}

φt (st,i + zi ) + qi (zi − 2γ)

=
n∑

i=1

max
zi∈{±1}

φt (st,i + zi ) + qt,i (zi − 2γ)

≥
n∑

i=1

φt (st,i + zt,i ) +
n∑

i=1

qt,i (zt,i − 2γ)︸ ︷︷ ︸
≥0
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s0, s1, · · · , sT .

Claim.
n∑

i=1

φT (sT ,i ) ≤
n∑

i=1

φT−1(sT−1,i ) ≤ · · · ≤
n∑

i=1

φ0(s0,i )

Training Error =
n∑

i=1

1{sT ,i≤0} ≤
n∑

i=1

e−ηsT ,i =
n∑

i=1

φT (sT ,i )

≤
n∑

i=1

φ0(s0,i ) = nφ0(0)

(Optimize over η) = n((
1
2

+ γ)e−η + (
1
2
− γ)e+η)T

(Setting η =
1
2

log(
1/2 + γ

1/2− γ
)) = n(1− 4γ2)

T
2

T→∞−→ 0
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AdaBoost

As we saw Booster was capable of making the loss very small.
However, the caveat is T , γ should be known in advance which is
an impractical assumption.

AdaBoost rectify this by setting:

γt =
1
2

n∑
i=1

Yiht (Xi )︸ ︷︷ ︸
Advantage of hypothesis ht

, ηt =
1
2

log(
1/2 + γt

1/2− γt
)︸ ︷︷ ︸

Amount of trust should be put onto ht

Booster’s strategy at round t becomes pt,i ∝ e−
∑t−1
τ=1 ητ zτ,i as

opposed to pt,i ∝ e−ηst,i = e−η
∑t−1
τ=1 zτ,i .

Final majority vote becomes g(X ) = sign(
T∑

t=1

ηtht (X ))
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AdaBoost

Theorem
Suppose the weak learning algorithm, when called by AdaBoost,
generates hypotheses with advantages γ1, · · · , γT . Then the final
bound on number of misclassified examples by the majority vote
becomes:

n
T∏

t=1

√
1− 4γ2

t

Remark
γt does not require to be positive which corresponds to a classifier
better than random guessing and the bound still holds.
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Paradox

A How can it be that complex combined classifiers are performing
well? Why test error flatens?!

B How come training error is zero but test error is still reducing?
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Is a simpler classifier a better one?

One might say ηt are rapidly converging to zero so the number of
classifiers combined is effectively bounded.

This is not true since if ηt =
1
2
log(

1/2 + γt

1/2− γt
) goes to zero then γt

must go to zero but it stays around 44-45% in this dataset.
This indicates resistance to overfitting! Don’t get me wrong,
though, there are cases which AdaBoost overfits. This happens
when we use very weak base classifiers...
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Margin Theory

Additional information lies in the
confidence of our prediction, i.e.,
|g(X )| which is the margin
corresponding to that sample.
The confidence in our predictions
increases significantly with additional
rounds of AdaBoost
There is a Generalization theorem by
Schapire and other peers which
relates true error with emipirical
distribution of the margin...
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Conclusion

We showed boosting had its roots in a purely theoretical
question.
Proved existence of an ideal Majority Vote Booster and then
attempted to give an algorithm to find such classifiers.
We proved training error can be very small (even zero) after
enough number of iterations.
We Introduced AdaBoost which was basically an adaptation from
the boosting algorithm stated.
We gave some intuition on how Boosting resist to overfit.
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