
Exploration Methods Based on Value Functions

Navid Ardeshir (na2844)

Statistics Department

October 2020

Abstract

This is an overview on some exploration methods based on the value function in online-
Reinforcement Learning. Methods, such as Ensemble sampling, Randomized Value Functions
Value Iteration (RLSVI), and Randomized Prior Functions (RPF) are included. In this report,
we provide a simple comparison between these methods and attempt to give a theoretical bound
for the ensemble version of RLSVI by exhibiting a connection to the classical Bandit Problem.

1 Introduction:

Recent problems more or less are involved with huge state space representations along with a
sparse reward distribution which demands generalization and exploration. To that end, an efficient
algorithm requires to gather useful data (containing informative and rewarding states) and learn
from that experience subsequently. Essentially, having a well performed RL agent is immensely
tied with the quality of exploration. This issue has attracted a bulk of work towards this subject.

Classical exploration methods such as Dithering (i.e. ε-greedy, Boltzmann, and etc.) are widely
used in practice but they suffer from lack of memory over actions that are known to be inferior.
To reiterate, exploratory actions are those which some information will be gained upon taking
them. Trivially, an action that we are certain that leads to an undesirable trajectory is not worth
exploring. Moreover, it is quite easy to construct an environment so that ε-greedy fails to explore
in poly-time. Alternatives such as ε-annealing were introduced in order to subside the issue by
decreasing ε value over time as we get more certain regarding value function estimates. However,
in order to resolve this critical issue entirely we need a more rigorous way to measure uncertainty.

Indeed, the environment is not fully known a-priori and the goal is to estimate the corresponding
value functions. From a statistical point of view, there are two natural ways to proceed:

• Frequentist: Based on the existing history and observed values we may construct an empir-
ical model of the environment for which we can apply classical methods (e.g. Value Iteration
+ Dithering) to obtain an estimate for value functions. Moreover, we are able to introduce
uncertainty by constructing confidence sets surrounding the observed MDP. Methods such as
Optimism in The Face of Uncertainty [5] follows this approach.

• Bayesian: Instead of having point estimates (of environment) we can incorporate uncertainty
by having a prior distribution over the environment and update it as we observe data. Even-
tually, it’s well known that the posterior distribution under minimal conditions (the support
of prior distribution should contain the true environment) will concentrate around the truth.
This approach is inspired by Thompson Sampling [5] in the online-learning literature.

1

Although, both of these approaches are valid in practice but the latter offers a more efficient way
of exploration which leads to better regret bounds [4]. Indeed, there is always a trade-off between
the efficacy and computational efficiency of the algorithm. In Bayesian approaches often we are
facing with the issue of intractability of computing the posterior. However, methods discussed here
resolve this issue by approximating the posterior distribution in variety of ways.
Mathematical Formulation: Suppose we are interacting with an environment which can be
modeled as a Markov Decision Process (MDP) M = (H,S,A,P,R, ρ) where H is time horizon, S
is a finite state space, A is action space, P is transition kernel, R is reward distribution, and ρ(.)
represents the initial distribution on the state space in the beginning of an episode. For convenience
we assume state space decomposes S = ∪t≤H(t,St) where t is the time-step and for every state
s ∈ S we have s = (t(s),St(s)) and ρ is supported on (1,S1).1 We define a policy π : S 7→ ∆(A) as
a mapping from states to a distribution over actions. Note that we may assume the policy to be
stationary since we are including time-step in our state variable. Let us further denote the observed
data in episode ` with Oh` = (s`t, a

`
t, r

`
t)t≤h and history HL = (OH`)`≤L. Assuming we are taking

actions via policy π we can then define the state-action value function as the following:

QπM(s, a) = E[
H∑

t=t(s)

rt | M, π, s, a]

In addition, V π
M(s) = E[QπM(s, π(s))|M, π, s] is the value function associated to every state.

A Reinforcement Learning algorithm algL : HL−1 7→ Π can be characterised as a mapping from
the observed history to a policy. Indeed, we are trying to find the optimal policy through epistemic
learning, however, the notion of ”optimal” may change based on the setting we are working with.
The first notion of ”optimal” is to considerM to be fixed and fully known in the hindsight. Thus,
we may define optimal policy π∗ : s 7→ arg maxa∈AQM(s, a) where QM is the true value function
associated to the MDP. In this setting the regret can be defined in a Frequentist manner as follows:

Regret(alg,M, L) := E[

L∑
`=1

V π∗
M (s)− V π`

M (s) | M, s ∼ ρ(.)]

Where π` = alg(H`−1) is the policy generated by the algorithm.2 Trivially, the regret incurred
by an algorithm in this setting is task specific and does not provide a way for us to compare
algorithms. Frequentists tend to resolve this by measuring the regret in the worst case scenario
supMRegret(alg,M, L) among a family of MDPs. On the contrary, Bayesians take an average of
regrets over some distribution on a family of MDPs. More precisely, let us assume µ is a measure
over a family of MDPs. Then:

Regret(alg, L) := Eµ[Regret(alg,M, L)] =

∫
Regret(alg,M, L) µ(dM)

One can imagine Bayesian setting as a more flexible alternative since we can recover the Frequentist
setting by setting µ to be a Dirac measure on the underlying truth. The connection is more
transparent through the following lemma.3

Lemma 1 (Duality) Consider a valid algorithm alg = (alg`)`≤L and an arbitrary measure µ over
a family of MDPs. Then the following duality equation holds where suprema and infima are over a

1This is merely required for the regret bound analysis and the methods are applicable beyond this setting.
2It is worth mentioning that we are implicitly assuming actions in O` are taken based on π`.
3All the infima and suprema are over a valid set of families of algorithms and MDPs.

2

family of valid algorithms and MDPs:

sup
µ

inf
alg

Regret(alg, L) = inf
alg

sup
M

Regret(alg,M, L) (1)

One might now ask what is the optimal algorithm through the Bayesian lens which achieves
the infimum in the left hand side of equation (1). At episode ` given the history H`−1 the optimal
policy can be characterized as follows:

π∗` : s 7→ arg max
a∈A

E[QM(s, a)|H`−1]

Notice that computing the Bayes optimal policy
is essentially challenging since it requires you
to know how a prior on M translates into a
prior on the corresponding value functions QM.
Moreover, if we had access to an oracle for com-
puting the prior, updating the posterior would
seem to be intractable. Surprisingly, it is well
known in the online-learning literature that acting greedily based upon posterior mean will lead to
poor exploration [5]. Instead, inspired by Thompson Sampling we explore the environment more
efficiently by trying to sample a value function from the posterior and act greedily upon that.

π̃` : s 7→ arg max
a∈A

Q̃(s, a) , Q̃ ∼ pQM(.|H`−1)

Connection with Online Learning: In order to benefit from classical literature results we
establish a more concrete connection in the Reinforcement Learning to the classical setting by
translate our setting into a Contextual Bandit Problem in the following way. Let us define the set
of actions A′ to be the set of policies Π and state variable to be the underlying MDP M. Thus,
an agent at every episode is allowed to select a policy from Π based on the context Q̃ provided by
an oracle which is a sample from the posterior distribution pQM(.|H`−1). Moreover, a Thompson
Sampling agent opts greedy action π̃` upon receiving the context. Subsequently, the agent observes
Y` : s 7→ Q̃(s, π`−1(s)) and receives a reward R` := Y`(s1) + z` where z` ∼ N (0, v) is white noise
independent from the past and s1 ∈ S is a fixed initial state. Note that given history this reward
on average is equal to the average value function associated to the initial state. More precisely,
E[R`|H`−1] = E[QM(s1, π`−1(s1))|H`−1] = E[V

π`−1

M (s1)|H`−1] and maximum average regret can be
identified as:

R∗ := max
π∈Π

E[R`|M, π`−1 = π] = max
π∈Π

QM(s1, π(s1)) = V π∗
M (s1)

Hence, through this correspondence one can see that the regret defined in both cases match and
inherit all the previous results in the classical literature for free!

Indeed, generating samples from intractable distributions are yet difficult. This has lead to
alternative ideas such as ensemble sampling, approximate posterior sampling to name but a few
which we discuss here.

2 Ensemble Sampling

The main idea in this section is to use bootstrap as a proxy to construct an approximate pos-
terior distribution. Consider a fixed history/dataset H divided into K sub-datasets denoted by
H(1), . . . ,H(K) using a bootstrap resampling method. Although, the constructed datasets have

3

some amount of data shared among each other, however, given history H they are indepen-
dent. By applying the algorithm to each of these datasets we may form a population of policies
(π̂(i) = alg(H(i)))i≤K which is an approximation to the true underlying distribution of alg(H) given
history H.4 Therefore, we may sample from the approximate posterior by simply choosing one of
these policies uniformly at random.

Though, this is statistically plausible but it does not fit entirely to our setting since the data is
constantly evolving and the evolution in fact depends on the agents policy. However, we may adapt
to this concept so long as the algorithm at hand is comprised from an online learning procedure
internally that does not require full dataset in advance. Fortunately, this is true for most of RL
learning algorithms such as TD-learning. The following is a universal ensemble algorithm which is
the core ingredient of methods we are trying to illustrate in this report:

Algorithm 1: Master Ensemble Algorithm

Input : alg : H 7→ Π , K ∈ N
Initialize : initialize alg(i) parameters 1 ≤ i ≤ K
for ` = 1 . . . L do

Sample : I ∼ Unif({1, . . . ,K})
Act : collect data with alg(I) policy
for k = 1 . . .K do

Buffer : store each sample w.p. p
(independently)

Parameters: update parameters by
running alg.update()

end

end

H

H(1)

alg(H(1))

H(2)

alg(H(2))

. . . H(K)

alg(H(K))

In [2], they follow this line of idea to produce an algorithm called Bootstrapped-DQN by
performing a double-or-nothing bootstrap on the dataset with Deep-Q-Network agents and min-
imizing TD-loss. Loosely speaking, after data collection (for an episode) the parameters of the
neural net will be updated through a few steps of batch stochastic gradient descent step.
One evident issue with this algorithm is that one needs to maintain an ensemble of deep neural
networks which might not be scalable and efficient memory-wise. One way to circumvent this in
practice is to share initial layers of the network which tries to provide a low dimensional represen-
tation of the input and only vary last few layers.

Note that [6] provides an upper bound on the Bayesian regret gap between the Ensemble
approach and Thompson Sampling (true posterior sampling) when the ensemble size is of order
Ω(|A′ | log(|A′ |)). However, the action space A′ is exponentially large in our correspondence which
renders this bound useless but we conjecture that through a more customized analysis we should be
able to reduce the order down. The main takeaway is that at least in the linear tabular setting (i.e.
associate a parameter to every state action) we obtain sub-linear regret bounds for large enough
ensemble size.

4One can think of this as a sensitivity analysis by perturbing the dataset and running the algorithm multiple
times.

4

3 Approximate Posterior Sampling

In the previous section we introduced a non-parametric approach to posterior sampling where exact
inference was intractable. As an alternative we may use a parametric sampling approach which
approximates the posterior distribution. Consider fθ : S ×A 7→ R to be a family of functions (e.g.
neural networks) indexed by θ which has a prior N (θ̄, λI). One can imagine fθ as a value function
corresponding to some MDP Mθ for every θ. We can even relax this assumption more by taking
Mθ ∈ arg minM ||fθ −QM|| as the corresponding MDP in the agnostic scenario but for the sake of
simplicity we assume the more restrictive assumption. Heuristically speaking, the following should
hold:

E[r + max
a∈A

fθ(s
′
, a)− fθ(s, a) | θ, s, a] = 0

where the expectation is with respect to randomness in the transition according toMθ. Moreover,
let us assume that the observed reward is noisy with additional white Gaussian noise. More

precisely, the agent observes reward r̃t := rt + zt where zt
i.i.d∼ N (0, v2) as opposed to observing

rt.
5 Hence, given transition (st, at, r̃t, st+1), temporal difference on this transition is normally

distributed. The core idea is to extend a simple computation from Bayesian Linear Regression
for nonlinear regression. Let us define the modified TD-loss functions associated to Randomized
Least Squares Value Iteration (RLSVI) and Randomized Prior Function (RPF) respectively as the
following:

LRLS(θ; θ−, θ0,H) =
1

v2

∑
(s,a,r̃,s′)∈H

(r̃ + max
a∈A

fθ−(s
′
, a)− fθ(s, a))2 +

1

λ
‖θ − θ0‖22

LRPF (θ; θ−, θ0,H) =
1

v2

∑
(s,a,r̃,s′)∈H

(r̃ + max
a∈A

(fθ− + fθ0)(s
′
, a)− (fθ + fθ0)(s, a))2 +

1

λ
‖θ‖22

where θ0 ∼ N (θ̄, λI) is an independent copy of θ and is fixed through the whole training. One can
simply extend ensemble sampling by utilizing these objectives instead of the TD-loss. Note that
both of these objectives are equivalent by change of variable (translation) if fθ is linear in θ which
leads to the same optimization problem; Furthermore, in that case, minimizing either of these loss
functions over an episode would result in a approximate posterior sample of pθ(.|H) (see Lemma 3.
[3]).
It is worth mentioning that Randomized Prior Function objective is fundamentally different from
RLSVI in nonlinear case. This is due to an additive prior term which behaves as an intrinsic reward
for exploration. Suppose the true reward is zero in most of the states and the bootstrap ensemble
learned to predict zero for all states. However, the prior term abstain the agent from generalizing
to predict zero since one might expect E[maxa∈A fθ0(s

′
, a)] to be positive for some agent in the

ensemble [3].
Although, randomized prior function is practically more plausible, however, RLSVI algorithm is
more suited for proving theoretical guarantees. In the following we assume we are running the
modified ensemble algorithm with ensemble size K = 1. To our knowledge, valid theoretical
bounds for larger K has not been proven yet even in the linear tabular case. [4] proves a Bayesian
regret bound Õ(H

√
|S||A|HL) for RLSVI where H is time horizon and L is number of episodes.

Moreover, [7] proves worst-case regret bounds Õ(H3|S|
3
2

√
|A|L) which is not quite sharp. More

5One can think of this as injecting noise into the reward and then store it if we were provided with the true reward.

5

recently, [9] proves worst case regret bounds Õ(d2H2
√
T) over the set of MDPs with low rank

dynamics where d is the dimension of the underlying feature space.

4 Simulation

In this section we provide a simple comparison study on these methods over the Deep Sea Envi-
ronment [4]. This environment consists of a N ×N grid where the agent starts off from the top-left
state. The action space is binary which indicates a right or left action but the agent does not know
action associations as well. In other words, the agent does not know which action results in going
right or left at states that has not been visited yet. Moreover, moving right incurs a penalty (i.e.
negative reward −0.01

N) on the agent which motivates the agent to not explore the environment. The
bottom right state is a mystery state! It might contain a treasure (reward 1) or a bomb (reward
-1). We implemented an Ensemble Randomized Prior Function with priors having the same neural
network structure as the DQN except with different (independent) initialization. This task does
not require to be modeled in a complicated way but following in [4], we modeled states as a a
Boolean image (one at the current location of the agent and zero otherwise). Q-Networks consisted
of only one hidden layer with size of 20 for N = 20 where updates of the network were handled
using ADAM optimizer. Admittedly, we have found that simple SGD (without decay rate) does not
converge to a valid solution and required careful step size tuning. Furthermore, buffers associated
to each agent were identical, i.e. p = 1.

Figure 1: Left is a figure from [4] demonstrating mechanism of Deep Sea Environment. Middle is
a heat map generated by aggregating value function associated to each state from the ensemble.
Here the red path shows the trajectory taken by the current episode’s policy. Moreover, ensemble
size K here is equal to 10. Right is a sensitivity analysis on ensemble size hyper-parameter.

Finally, one interesting observation is that the effect of ensemble size was not monotonic which
contradicts with the behaviour in the linear tabular case as mentioned in previous sections. The
optimal regret were achieved at K = 10 for this specific environment. To our knowledge, it is worth
mentioning that there is yet no theoretical guarantee on the regret bounds for either of Ensemble
Randomized Prior or Ensemble Randomized Least Square in the linear tabular case.

For the sake of completeness and clarity of this report we also include the comparison of the
previously mentioned methods on Deep Sea environment from [3]. Let us define the learning time
of an algorithm to be the first episode at which average cumulative regret becomes less than 0.5.
The following figure demonstrates how these algorithms scale with N where the dashed line is the
exponential baseline curve:

6

Figure 2: From left to right methods used were ε−greedy, Bootstrap DQN, Bootstrap Randomized
Least Squared, and Bootstrap Randomized Prior Function. Ensemble size were K = 5 and Q-
networks had one hidden layer with 20 neurons. Moreover, bootstrap probability p was 0.5

5 Conclusion

In this report, we have tried to establish a more concrete connection with online-decision problems
to motivate Thompson Sampling approach. We have included approximate methods to overcome
the difficulties induced by intractability of posterior sampling. Methods provided, had theoretical
guarantees in the tabular case even with function approximation. Finally, a comparison simulation
were conducted to demonstrate the effectiveness of these algorithms. In addition, two main ques-
tions arose during reading the reference papers which was also addressed in the previous sections.
Firstly that these methods seems to rely heavily on ADAM optimizer and it would be interesting
to follow the dynamics of this optimization method in the linear tabular case and compute regret
bounds. Secondly, extended versions of ensemble sampling (Bootstrap DQN + Randomized Prior
Function) seems to be controversial in the sense that ensemble size behaves differently for linear
tabular and functional approximation setting.

References

[1] Exploration Strategies in Deep Reinforcement Learning

[2] Osband, I., Blundell, C., Pritzel, A. and Van Roy, B., 2016. Deep exploration via bootstrapped
DQN. In Advances in neural information processing systems (pp. 4026-4034).

[3] Osband, I., Aslanides, J. and Cassirer, A., 2018. Randomized prior functions for deep reinforce-
ment learning. In Advances in Neural Information Processing Systems (pp. 8617-8629).

[4] Osband, I., Van Roy, B., Russo, D.J. and Wen, Z., 2019. Deep Exploration via Randomized
Value Functions. Journal of Machine Learning Research, 20(124), pp.1-62.

[5] Russo, D., Van Roy, B., Kazerouni, A., Osband, I. and Wen, Z., 2017. A tutorial on thompson
sampling. arXiv preprint arXiv:1707.02038.

[6] Lu, X. and Van Roy, B., 2017. Ensemble sampling. Advances in neural information processing
systems, 30, pp.3258-3266.

[7] Russo, D., 2019. Worst-case regret bounds for exploration via randomized value functions. In
Advances in Neural Information Processing Systems (pp. 14433-14443).

7

https://lilianweng.github.io/lil-log/2020/06/07/exploration-strategies-in-deep-reinforcement-learning.html

[8] Dwaracherla, V., Van Roy, B., 2020. Langevin DQN. [Preprint] Available from:
https://arxiv.org/abs/2002.07282

[9] Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M. and Lazaric, A., 2020, June. Fre-
quentist regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics (pp. 1954-1964). PMLR.

8

https://arxiv.org/abs/2002.07282

	Introduction:
	Ensemble Sampling
	Approximate Posterior Sampling
	Simulation
	Conclusion

