Intrinsic dimensionality and
generalization properties of

the &?-norm inductive bias.
Navid Ardeshir

Based on joint work with Clayton Sanford and Daniel Hsu



Benign Overfitting

* Large (overparameterized) deep learning
models that interpolate data can generalize
well. [P. Nakkiran et al. ‘19]

* Network size is not the main form of
capacity control. Alternatives might be the
size of weights. [B. Neyshabur et al. ’14]

e Controlling the £;-norm of the top layer

weights may result in good generalization.
[P. Bartlett 98]

* These bounds do not depend on size of the
network!

For valid generalization, the size of the
weights is more important than the size
of the network
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Abstract

This paper shows that if a large neural network is used for a pattern
classification problem, and the learning algorithm finds a network
with small weights that has small squared error on the training
patterns, then the generalization performance depends on the size
of the weights rather than the number of weights. More specifi-
cally, consider an £-layer feed-forward network of sigmoid units, in
which the sum of the magnitudes of the weights associated with
each unit is bounded by A. The misclassification probability con-
verges to an error estimate (that is closely related to squared error
on the training set) at rate O((cA)“‘+1)/2,/(logn)/m) ignoring
log factors, where m is the number of training patterns, n is the
input dimension, and ¢ is a constant. This may explain the gen-
eralization performance of neural networks, particularly when the
number of training examples is considerably smaller than the num-
ber of weights. It also supports heuristics (such as weight decay
and early stopping) that attempt to keep the weights small during
training.

1 Introduction

Results from statistical learning theory give bounds on the number of training exam-
ples that are necessary for satisfactory generalization performance in classification
problems, in terms of the Vapnik-Chervonenkis dimension of the class of functions
used by the learning system (see, for example, [13, 5]). Baum and Haussler [4]
used these results to give sample size bounds for multi-layer threshold networks




Learning with Restriction on Weight Norms

 We can think of networks with infinite size
but bounded in some norm of their weights
(known as “effective” capacity control).

 Almost all functions can be represented/
approximated by such infinitely wide
networks. [Barron ’93][Bach '17]

* Learning can be translated as finding a
function (in the entire function space) that
fits the data but with small “effective”
capacity. [Savarese et al. '19]

* We are interested in statistical properties of
such learned functions under specific data
distributions.



Learning with Wide Neural Nets

* Without any assumption on the data we are
doomed to use exponentially large number
of samples in data dimension.

* This is known as curse of dimensionality.

* Wide neural nets can beat the curse of
dimensionality for regression. [Bach ’17]

* Adaptivity to smoothness and low
dimensional structure (data lies on a low
dimensional manifold).

e How do NNs achieve this?
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Learning with Wide Neural Nets

* Without any assumption on the data we are
doomed to use exponentially large number
of samples in data dimension.

* This is known as curse of dimensionality.

* Wide neural nets can beat the curse of
dimensionality for regression. [Bach ’17]

* Adaptivity to smoothness and low
dimensional structure (data lies on a low
dimensional manifold).

e How do NNs achieve this?
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Supervised Learning Setting

. Let 2 C R?be compact. Given samples (x;, y,);, ~ v € P(L X %) denote the emp. measure as v,,.

 [wo layer neural network with m neurons:

e Letd=(a?,b? c¥).. e (R xR?xR)"and,

m
fo:d - R:xm Z aYo(bVx + V).
i=1
- Given samples the Goal is to find 0, 711 that minimize the out of sample loss ||y — fa(xX) [},

I<m

« We consider the following ERM regularized with a capacity function C,

(6,) € minmin [ly - ()|l + ACO).



Capacity Control

INeyshabur et al. 14}

m

e As argued in Neyshabur et. al. taking the size of inf inf ||y — Z aVo(bD7x + c<i))||ﬁ2(y ,+ Am
the network is not an informative capacity control. "<V ¢ i=1 "

m m
» A natural regularization used in practice is weight ~inf inf|ly — ) aPe(®0@Tx+ D)2, |+ 1 ) [a” >+ b7

. | IOS 12(s,)
decay (without regularizing bias terms) meN ¢ =1

* For RelLU networks this is equivalent to:

* The scale of bottom layer weights can be

_ -1 1 _
absorbed into top layer weights. O =1@ab,c) € RXSTX[=cp 6ol

« Transformation (a, b, ¢) — (at, b/t, c/t) does not D 1aD P+ (pD)2 = Y 21a?]||pO
change the output of the network. i=1 i=1



Capacity Control

[Neyshabur et al. *14]

® = {(a,b,c) € RX S x[=cy cl}
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Convex Optimization Problem

Proposition. [Savarese et al. ’19]

Let ./ denote the space of signed measures equipped with total variation norm | - |. Then the two
optimization problems are equivalent and the minimum is attained by an even measure:

m
inf 1nf — aDo(bDTx + cY||?
meN 00" Iy ; ( gl L>(v,)

+22) |a¥| =
=1

min
PEM (S X[—chucol)

|y —

o(bx + )p(db,do)||fy, , + 241 p]

m m
. One can always have discrete measure p, = 2 a5 - — (bW, cV)) with total variation |p,| = 2 la®].

=1

* Every integral can be approximated arbitrarily well with finite sums.

=1

 Minimum is attained since the space of sighed measures with bounded variation is compact as a

consequence of Prokhorov’s Thm.
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Neural Network Function Space

» What functions can be implemented by an min ly = [o(b"x + c)p(db, do)lIt, , + 241 p]
infinite neural network? pPEMES ™ X=cp ) ~
 Effectively all continuous functions. Vi€ €(X) = Ip, f(x) = f,(x) = o(b'x + c)p(db, dc)
[Barron '97][Leshno et al. *93] :

|t is natural define the functional norm:

* The function space that neural networks
can represent is denoted by F={fT->R:|fllaz <o}

* The optimization problem can be el — > P
reformulated in terms of this norm. fleng 1y =70z, + Al
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Neural Network Function Space

Vf € B(X) = Ip, fx) = f,(x) = pa(bTx + ¢)p(db, dc)
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What is #£-Norm?

[Parhi et al. ’22]

e Can we actually characterize || - || norm . _
Y I+l Al = infl 1p] : p € LS X [=cor o). f(6) = f2). Vx € T}

explicitly?
d
* Yes! It’s related to Radon transform given fllo = ”%(A%) . + A0 | + (e)) — f(O)
that the function is smooth enough. Mz Plsstxi-coen + 170 ;lf o —SO)]

[Ongie et al. '20]

* Linear functions are the null space for the
first term in the norm.

* For a cleaner formulation Ongie et al.
considered a semi-norm insensitive to linear
functions &,.

* The space induced by #-norm remains the F={fT->R:|fllg<oo}={f: T ->R:|fllgz < oo}
same as #.
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w'z =10
p(w, b)
“x 9
What is #£-Norm? .
[Parhi et al. ’22] . f(x)
RO w = [cos(8), sin(6)] "

e Can we actually characterize || - || norm . _
Y I+l Al = infl 1p] : p € LS X [=cor o). f(6) = f2). Vx € T}

explicitly?
d
* Yes! It’s related to Radon transform given fllo = ”%(A%) . + A0 | + (e)) — f(O)
that the function is smooth enough. Mz Plsstxi-coen + 170 ;lf o —SO)]

[Ongie et al. ’20]

* Linear functions are the null space for the
first term in the norm.

* For a cleaner formulation Ongie et al.
considered a semi-norm insensitive to linear
functions &,.

* The space induced by #-norm remains the F={fT->R:|fllg<oco}={f: T ->R:|fllgz < oo}
same as #.
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Properties of %2-Norm

Lemma. [Parhi et al. ’19] - | |
For a discrete neural network with distinct weights (b", ¢y £ + (b, ¢} the #-norm corresponds

to £';-norm of the top layer weights.

m

m
Y a4 )| =Y 1a®
1 =1

i=1

Theorem. [Parhi et al. ’19]
For a Lipschitz univariate function f € Lip([—cy, ¢y]) the #-norm corresponds to the total variation of its
weak first derivative.

il = WPy = supl D 1F ) —f )| =<ty <ty < ... <1, < )
=1

« When the function has second derivative then ||f]| 5 = ||9?2(Ad51f)||[L1(gd_1X[_CO,COD = "Ny = 171y

* Draws connection to spline theory.

16
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Properties of the Function Space

(Representation Theorem)

 How does the solutions to the infinite dimensional optimization problem look like?

: . 2
fg"lgllR Hy f(x)H[I_z(yn) T ﬂ”f”%

Ifll = 1nt{ | p]| : f(x) = J'a(bTx + ¢)p(db, dc) + bOTx + cp, Vx € X'}
« The functions space (#,|| - || ) is a (non-Hilbertian) Banach space. [Siegel et al. "22][Parhi et al. "21]

Theorem. [Rosset et al. ’07][Parhi et al. ’21]
For any regularization parameter A € [0,00) there exists a finite network with m < n + 1 — d neurons
and parameters 6, € ®™ which attains the minimum.

fo, € arg min |y = fOIE,, + Allfll
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Adaptivity to Low Dimensional Structure
[Bach ’17][Parhi et al. '22]

* Consider the non-parametric regression setting y = f*(x) + ¢ and denote (x,y) ~ v.

g

inf sup ||f* _fé/llll]_z(y)

int sup ||f* = fll 2,

A freg I freg
~,  __1_ =~ _1
No assumption O(n=7+3) BO(n~7)
K
T d ~ ~ 2
Projection Pursuit Z gi(w; x),w; € R O(k\/dn™7) B(n3)
j=1
T kxd ~ ~
Dependence on subspace g(W'x), WeR™ O(/dn=77) O(n—77)
Bounded norm Igllz < B O(n~37%3) O(n =377

19




Adaptivity (Ctd.)

 How do neural networks achieve such adaptivity?

: . 2
fg”lgl[R ”y f(x)‘l[l_z(z/n) T /1”][”%

e The £ -norm is adaptive to low dimensional structure:

« For a symmetric domain 2 and projection matrix W & IRkXd, W'w = Ikxk

Vxed flx)=gWx) = |lfllz=llgllz

* |f the neural net could find the low dimensional subspace then it easily can achieve optimal
nonparametric rates.

* One might speculate that such minimizers with dependence on a low dimensional subspace might
exists when such structure is present in the true regression function.
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Ridge Functions

 How does fitting data while minimizing
A -norm look like?

* For multivariate functions finding even one
solution is difficult in general, but ridge

functions can be reduced to univariate case.

* For univariate functions:

* Linear spline is always a solution
[Savarese et al. ’19]

* Hanin ’21 characterized all the possible
solutions.

R(hg) = 4.35] [C(6) = 3.28]

arg min{ ||fll g : f¥) = y,»i < )

arg min{ ||f |l : f05) =y i < n)

~

P

‘R(hg) =4.35)(C(6) = 3.48]

P

(R(ho) =4.35][C(6) = 3.93)

21

T

3 layers, '1 00 units

T

4 layers, '1 00 units

[Savarese '19]

T

5 layers, '1 00 units



Ridge Functions

 How does fitting data while minimizing
A -norm look like?

* For multivariate functions finding even one
solution is difficult in general, but ridge

functions can be reduced to univariate case.

* For univariate functions:

* Linear spline is always a solution
[Savarese et al. ’19]

 Hanin ’21 characterized all the possible
solutions.

22
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arg min{ ||fll g : f¥) = y,»i < )

arg min{ ||f |l : f05) =y i < n)

[Hanin '21]
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When the #-norm is not
adaptive? (Our results) &

(20 min)
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Parity Dataset

e Consider the distribution (x,y) ~ v where x ~ unif{=1}¢is sampled uniformly from the hypercube and

labeled y = y(x) = H]‘f:lxj where y is defined over the bounded domain & = \/ZB‘;z(l).

* Parity data can be represented exactly by ridge functions.

d N /.

Vx € {+1}¢ y(x)=g(1"x)= ) x,mod 2. UR a \/
j=1 |

Theorem. [Our work]

Though the parity function y can be represented by ridge functions but &2-norm minimizers which
fits the parity data are not ridge functions.

. , 1 .
O(d?) = lnf{ Ifllg : f € Ridge,, |[x — fllie@) < 5} >4 1nf{ Il = Ml = Fll ey = O} = 0(d)
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Proof Ideas
(Ridge Functions)

Theorem. :
For ridge functions 7: & — R : x » = g(w'x) the best achievable rate is 4-.

. | 1 .
mf{ fll - f € Ridge,. llx = fllysq < 5} = 6(d?)

* Upper Bound: Parity data can be represented

exactly by ridge functions:
d d \
X; = :E:\yﬁg.nﬂCKjIZ. - >

. Forwe {£1}? we have y(x) = )
j=1 j=1

» We need d RelUs to construct parity..
7l = O(dv/d)

25



Proof Ideas
(Ridge Functions)

Theorem.

For ridge functions f: & — R : x » = g(w'x) the best achievable rate is d.

2

. | 1 .
mf{ 1Al : £ € Ridge, ., Il = Al < —} = 6(d?)

* Lower Bound: For ridge functions

» Take the subset of points for which y(x®) # y(x+1),

x® = (Sign(w)), ..., Sign(w;), — Sign(w; ), ..., — Sign(w,))

» Using mean value theorem choose 7; such that

o(t)] > 1 |8(WTx(i+1)) — g(w'x") |
SVl =75 wTxG+D — T 0)

26

Al = llgllTv =

sup Z 18'(2) — g'(t;,_1) |

—d<ity<t,<...<t<\/d j=1




Proof Ildeas

(Multi-index Functions)

Theorem.
For function f: & — R that fits the parity data

inf { 12 I = fllimy = 0 } = O()

 Upper Bound: Use an averaging technique to

combines a collection of distinct ridge functions.

* Pick w e {+1}¢ randomly and take the scaled
average sawtooth function in that direction.

* This function fits the parity data.

* Since %-norm satisfies triangle inequality:

27

$5,(0) = ()1 {w x = 0)

Els, (x)] B 1

J(x) =

PlwTx=0] ( d
d/?2

f(¥) = y(x),Vx € {1}

)

Z $,,(X) ~ g

we{+1}¢

2

we{+1}4

d
||f||ggN— 2| ||gg<£ D, lwl,=d

we{+11¢

we {114

$,,(X)



Proof Ildeas

(Multivariate Functions)

Theorem.
For function f: & — R that fits the parity data

inf { 12 I = fllimy = 0 } = O()

« Lower Bound: Utilizes the fact a fixed ReLU neuron cannot much correlate with parity in L*®).

By definition any function with finite &2-norm admits an integral representation.

f(x) = |o(b'x + c)p(db, dc) + bOT X+ ¢

* Linear terms does not correlate with parity

1 =E, [fy)] = |E, [o(b"x+¢), y(x)]p(db,dc) < |p|sup E,_ [6(b"x + ¢), y(x)]
J b,c
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Recap

« %-norm is a functional norm with connections to neural network training.

« A£-norm regularization which enjoys adaptivity to low dimensional structure.

e Qur results demonstrate some limitations of that for certain data distributions.
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Other Contributions

» We further study the generalization properties of £2-norm interpolators.
e Whenn = Q(d3) with high probability all minima approximates the parity well.

e Whenn = 5(d2) with constant probability all minima are far from the parity function.

* This separation phenomenon between ridge and multidirectional functions remains for other distributions
analogous to parity.

* Experiments indicating training with SGD prefer low variational norm functions.

 Comparing architectures which forces low dimensional structure as opposed to fully connected nets.
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