
Based on joint work with Clayton Sanford and Daniel Hsu

Intrinsic dimensionality and 
generalization properties of  
the -norm inductive bias.ℛ
Navid Ardeshir 
Columbia University, Department of Statistics

1



• Large (overparameterized) deep learning 
models that interpolate data can generalize 
well. [P. Nakkiran et al. ‘19]


• Network size is not the main form of 
capacity control. Alternatives might be the 
size of weights. [B. Neyshabur et al. ’14]


• Controlling the -norm of the top layer 
weights may result in good generalization. 
[P. Bartlett ’98]


• These bounds do not depend on size of the 
network!

ℓ1

Benign Overfitting
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• We can think of networks with infinite size 
but bounded in some norm of their weights 
(known as “effective” capacity control).


• Almost all functions can be represented/
approximated by such infinitely wide 
networks. [Barron ’93][Bach ’17]


• Learning can be translated as finding a 
function (in the entire function space) that 
fits the data but with small “effective” 
capacity. [Savarese et al. ’19]


• We are interested in statistical properties of 
such learned functions under specific data 
distributions. 

Learning with Restriction on Weight Norms
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• Without any assumption on the data we are 
doomed to use exponentially large number 
of samples in data dimension.


• This is known as curse of dimensionality.


• Wide neural nets can beat the curse of 
dimensionality for regression. [Bach ’17]


• Adaptivity to smoothness and low 
dimensional structure (data lies on a low 
dimensional manifold).


• How do NNs achieve this?

Learning with Wide Neural Nets
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[taken from Bach’s blog]
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[Parhi et al. ’22]



Outline
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What is this -norm? 🤔ℛ

(10 min)

How does this minimization 
connects to adaptivity? 🤪

(15 min)

When the -norm is not 
adaptive? (Our results) 🤯

ℛ

(20 min)

min
f:𝒳→ℝ

∥y − f(x)∥2
𝕃2(ν) + λ∥f∥ℛ
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Supervised Learning Setting

• Let  be compact. Given samples  denote the emp. measure as .


• Two layer neural network with  neurons:


• Let  and,


• Given samples the Goal is to find  that minimize the out of sample loss . 


• We consider the following ERM regularized with a capacity function ,

𝒳 ⊆ ℝd (xi , yi)i≤n ∼ ν ∈ 𝒫(𝒳 × 𝒴) νn

m

θ = (a(i), b(i), c(i))i≤m ∈ (ℝ × ℝd × ℝ)m

̂θ, m̂ ∥y − f ̂θ(x)∥𝕃2(ν)

C
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fθ : 𝒳 → ℝ : x ↦
m

∑
i=1

a(i)σ(b(i)⊤x + c(i)) .

( ̂θ, m̂) ∈ min
m∈ℕ

min
θ

∥y − fθ(x)∥2
𝕃2(νn)

+ λC(θ) .



[Neyshabur et al. ’14]

• As argued in Neyshabur et. al. taking the size of 
the network is not an informative capacity control.


• A natural regularization used in practice is weight 
decay (without regularizing bias terms)


• For ReLU networks this is equivalent to:


• The scale of bottom layer weights can be 
absorbed into top layer weights.


• Transformation  does not 
change the output of the network.  
 

(a, b, c) ↦ (at, b/t, c/t)

Capacity Control

9

inf
m∈ℕ

inf
θ

∥y −
m

∑
i=1

a(i)σ(b(i)⊤x + c(i))∥2
𝕃2(νn)

+ λ
m

∑
i=1

|a(i) |2 + ∥b(i)∥2

inf
m∈ℕ

inf
θ

∥y −
m

∑
i=1

a(i)σ(b(i)⊤x + c(i))∥2
𝕃2(νn)

+ λm

inf
m∈ℕ

inf
θ∈Θm

∥y −
m

∑
i=1

a(i)σ(b(i)⊤x + c(i))∥2
𝕃2(νn)

+ 2λ
m

∑
i=1

|a(i) |

m

∑
i=1

|a(i) |2 + ∥b(i)∥2 ≥
m

∑
i=1

2 |a(i) |∥b(i)∥

Θ = {(a, b, c) ∈ ℝ × 𝕊d−1 × [−c0, c0]}
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Convex Optimization Problem

• One can always have discrete measure  with total variation .


• Every integral can be approximated arbitrarily well with finite sums. 


• Minimum is attained since the space of signed measures with bounded variation is compact as a 
consequence of Prokhorov’s Thm. 

ρθ =
m

∑
i=1

a(i)δ( ⋅ − (b(i), c(i))) |ρθ | =
m

∑
i=1

|a(i) |
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Proposition. [Savarese et al. ’19]  
  Let  denote the space of signed measures equipped with total variation norm . Then the two 
  optimization problems are equivalent and the minimum is attained by an even measure:

ℳ | ⋅ |

inf
m∈ℕ

inf
θ∈Θm

∥y −
m

∑
i=1

a(i)σ(b(i)⊤x + c(i))∥2
𝕃2(νn)

+ 2λ
m

∑
i=1

|a(i) | = min
ρ∈ℳ(𝕊d−1×[−c0,c0])

∥y − ∫ σ(b⊤x + c)ρ(db, dc)∥2
𝕃2(νn)

+ 2λ |ρ |



• What functions can be implemented by an 
infinite neural network?


• Effectively all continuous functions. 
[Barron ’97][Leshno et al. ’93]


• It is natural define the functional norm:


• The function space that neural networks 
can represent is denoted by 


• The optimization problem can be 
reformulated in terms of this norm.

ℱ

Neural Network Function Space
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∥f∥ℱ = inf{ |ρ | : ρ ∈ ℳ(𝕊d−1 × [−c0, c0]), fρ(x) = f(x), ∀x ∈ 𝒳}

∀f ∈ 𝒞(𝒳) ⇒ ∃ρ, f(x) = fρ(x) = ∫ σ(b⊤x + c)ρ(db, dc)

ℱ = {f : 𝒳 → ℝ : ∥f∥ℱ < ∞}

min
ρ∈ℳ(𝕊d−1×[−c0,c0])

∥y − ∫ σ(b⊤x + c)ρ(db, dc)∥2
𝕃2(νn)

+ 2λ |ρ |

inf
f∈ℱ

∥y − f(x)∥2
𝕃2(νn)

+ λ∥f∥ℱ
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[Parhi et al. ’22]

• Can we actually characterize  norm 
explicitly? 


• Yes! It’s related to Radon transform given 
that the function is smooth enough.  
[Ongie et al. ’20]


• Linear functions are the null space for the 
first term in the norm.


• For a cleaner formulation Ongie et al. 
considered a semi-norm insensitive to linear 
functions . 


• The space induced by -norm remains the 
same as .

∥ ⋅ ∥ℱ

𝒫1

ℛ
ℱ

What is -Norm?ℛ
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∥f∥ℱ = ∥ℛ(Δd + 1
2 f )∥𝕃1(𝕊d−1×[−c0,c0]) + | f(0) | +

d

∑
k=1

| f(ek) − f(0) |

∥f∥ℱ = inf{ |ρ | : ρ ∈ ℳ(𝕊d−1 × [−c0, c0]), fρ(x) = f(x), ∀x ∈ 𝒳}

∥f∥ℛ = min
p∈𝒫1

∥f + p∥ℱ = ∥ℛ(Δd + 1
2 f )∥𝕃1(𝕊d−1×[−c0,c0])

ℱ = {f : 𝒳 → ℝ : ∥f∥ℛ < ∞}ℱ = {f : 𝒳 → ℝ : ∥f∥ℛ < ∞} = {f : 𝒳 → ℝ : ∥f∥ℱ < ∞}
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Properties of -Normℛ

• When the function has second derivative then .


• Draws connection to spline theory. 

∥f∥ℛ = ∥ℛ(Δd + 1
2 f )∥𝕃1(𝕊d−1×[−c0,c0]) = ∥f′ ′ ∥𝕃1(𝒳) = ∥f′ ∥TV

16

Lemma. [Parhi et al. ’19]  
  For a discrete neural network with distinct weights   the -norm corresponds 
  to -norm of the top layer weights. 

(b(i), c(i)) ≠ ± (b( j), c( j)) ℛ
ℓ1 m

∑
i=1

a(i)σ(b(i)⊤x + c)
ℛ

=
m

∑
i=1

|a(i) |

Theorem. [Parhi et al. ’19]  
  For a Lipschitz univariate function  the -norm corresponds to the total variation of its 
  weak first derivative. 

f ∈ Lip([−c0, c0]) ℛ

∥f∥ℛ = ∥f′ ∥TV = sup{
r

∑
i=1

| f′ (ti) − f′ (ti−1) | : − c0 ≤ t0 < t1 < … < tr ≤ c0}
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What is this -norm? 🤔ℛ
How does this minimization 
connects to adaptivity? 🤪

(15 min)

When the -norm is not 
adaptive? (Our results) 🤯

ℛ

min
f:𝒳→ℝ

∥y − f(x)∥2
𝕃2(ν) + λ∥f∥ℛ



Properties of the Function Space
(Representation Theorem)

• How does the solutions to the infinite dimensional optimization problem look like?


• The functions space  is a (non-Hilbertian) Banach space. [Siegel et al. ’22][Parhi et al. ’21](ℱ,∥ ⋅ ∥ℛ)
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min
f:𝒳→ℝ

∥y − f(x)∥2
𝕃2(νn)

+ λ∥f∥ℛ

Theorem. [Rosset et al. ’07][Parhi et al. ’21]   
   For any regularization parameter  there exists a finite network with  neurons 
  and parameters  which attains the minimum.

λ ∈ [0,∞) m ≤ n + 1 − d
̂θλ ∈ Θm

f ̂θλ
∈ arg min

f:𝒳→ℝ
∥y − f(x)∥2

𝕃2(νn)
+ λ∥f∥ℛ

∥f∥ℛ = inf{ |ρ | : f(x) = ∫ σ(b⊤x + c)ρ(db, dc) + b⊤
0 x + c0, ∀x ∈ 𝒳}
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• Consider the non-parametric regression setting  and denote .y = f*(x) + ϵ (x, y) ∼ ν

Functional form Generalization bounds Nonparametric rates

No assumption

Projection Pursuit

Dependence on subspace

Bounded norm

Adaptivity to Low Dimensional Structure
[Bach ’17][Parhi et al. ’22]

inf
λ

sup
f*∈𝒢

∥f* − f ̂θλ
∥𝕃2(ν) inf̂

f
sup
f*∈𝒢

∥f* − ̂f∥𝕃2(ν)

k

∑
j=1

gj(w⊤
j x), wj ∈ ℝd

𝒢

g(W⊤x), W ∈ ℝk×d

Õ(n− 1
d + 3 ) Θ̃(n− 1

d )

Õ(k dn− 1
4 ) Θ̃(n− 2

3 )

Õ( dn− 1
k + 3 ) Θ̃(n− 2

k + 2 )

∥g∥ℛ ≤ B Õ(n− d + 3
2d + 3 ) Θ̃(n− d + 3

2d + 3 )



Adaptivity (Ctd.)

• How do neural networks achieve such adaptivity?


• The -norm is adaptive to low dimensional structure:


• For a symmetric domain  and projection matrix 


• If the neural net could find the low dimensional subspace then it easily can achieve optimal 
nonparametric rates.


• One might speculate that such minimizers with dependence on a low dimensional subspace might 
exists when such structure is present in the true regression function. 

ℛ

𝒳 W ∈ ℝk×d, W⊤W = Ik×k
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min
f:𝒳→ℝ

∥y − f(x)∥2
𝕃2(νn)

+ λ∥f∥ℛ

∀x ∈ 𝒳 f(x) = g(Wx) ⇒ ∥f∥ℛ = ∥g∥ℛ



• How does fitting data while minimizing  
-norm look like?


• For multivariate functions finding even one 
solution is difficult in general, but ridge 
functions can be reduced to univariate case.


• For univariate functions:


• Linear spline is always a solution  
[Savarese et al. ’19]


• Hanin ’21 characterized all the possible 
solutions. 

ℛ

Ridge Functions
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arg min{∥f∥ℛ : f(xi) = yi, i ≤ n}

arg min{∥f′ ∥TV : f(xi) = yi, i ≤ n}

[Savarese ’19]
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functions can be reduced to univariate case.
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• Hanin ’21 characterized all the possible 
solutions. 

ℛ

[Hanin ’21]

Ridge Functions
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arg min{∥f∥ℛ : f(xi) = yi, i ≤ n}

arg min{∥f′ ∥TV : f(xi) = yi, i ≤ n}
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What is this -norm? 🤔ℛ
How does this minimization 
connects to adaptivity? 🤪

When the -norm is not 
adaptive? (Our results) 🤯

ℛ

(20 min)

min
f:𝒳→ℝ

∥y − f(x)∥2
𝕃2(ν) + λ∥f∥ℛ



Parity Dataset

• Consider the distribution  where   is sampled uniformly from the hypercube and 
labeled   where  is defined over the bounded domain . 


• Parity data can be represented exactly by ridge functions.

(x, y) ∼ ν x ∼ Unif{±1}d

y = χ(x) = Πd
j=1xj χ 𝒳 = d𝔹d

ℓ2
(1)
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Theorem. [Our work]   
   Though the parity function  can be represented by ridge functions but -norm minimizers which 
   fits the parity data are not ridge functions. 

χ ℛ

Θ(d 3
2) = inf {∥f∥ℛ : f ∈ Ridged , ∥χ − f∥𝕃∞(ν) ≤

1
2 } ≫d inf {∥f∥ℛ : ∥χ − f∥𝕃∞(ν) = 0} = Θ(d)

1⊤x mod 2.∀x ∈ {±1}d χ(x) = g(1⊤x) =
d

∑
j=1

xj



Proof Ideas
(Ridge Functions)

Theorem.   
   For ridge functions  the best achievable rate is .f : 𝒳 → ℝ : x ↦ = g(w⊤x) d

3
2

inf {∥f∥ℛ : f ∈ Ridged , ∥χ − f∥𝕃∞(ν) ≤
1
2 } = Θ(d 3

2)

• Upper Bound: Parity data can be represented 
exactly by ridge functions: 


• For  we have  mod 2. 


• We need  ReLUs to construct parity..

w ∈ {±1}d χ(x) =
d

∑
j=1

xj =
d

∑
j=1

wjxj

d
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w⊤x

∥χ∥ℛ = O(d d)



Proof Ideas
(Ridge Functions)

• Lower Bound: For ridge functions


• Take the subset of points for which ,


• Using mean value theorem choose  such that

χ(x(i)) ≠ χ(x(i+1))

ti
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∥f∥ℛ = ∥g′ ∥TV = sup
− d≤t0<t1<…<tr≤ d

r

∑
i=1

|g′ (ti) − g′ (ti−1) |

x(i) = (Sign(w1), …, Sign(wi), − Sign(wi+1), …, − Sign(wd))

|g′ (ti) | ≥
1
2

|
g(w⊤x(i+1)) − g(w⊤x(i))

w⊤x(i+1) − w⊤x(i)
|

w⊤xw⊤xw⊤xti

g(w⊤x(i+1))

g(w⊤x(i))

Theorem.   
   For ridge functions  the best achievable rate is .f : 𝒳 → ℝ : x ↦ = g(w⊤x) d

3
2

inf {∥f∥ℛ : f ∈ Ridged , ∥χ − f∥𝕃∞(ν) ≤
1
2 } = Θ(d 3

2)



Proof Ideas
(Multi-index Functions)

• Upper Bound: Use an averaging technique to 
combines a collection of distinct ridge functions.


• Pick  randomly and take the scaled 
average sawtooth function in that direction.


• This function fits the parity data. 


• Since -norm satisfies triangle inequality:

w ∈ {±1}d

ℛ
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Theorem.   
   For function  that fits the parity dataf : 𝒳 → ℝ

inf {∥f∥ℛ : ∥χ − f∥𝕃∞(ν) = 0} = Θ(d)

f(x) =
𝔼[sw(x)]

P[w⊤x = 0]
=

1

( d
d/2) ∑

w∈{±1}d

sw(x) ≈
d

2d ∑
w∈{±1}d

sw(x)

f(x) = χ(x), ∀x ∈ {±1}d

sw(x) = χ(x)1{w⊤x = 0}

∥f∥ℛ ≲
d

2d ∑
w∈{±1}d

∥sw∥ℛ ≤
d

2d ∑
w∈{±1}d

∥w∥2 = d



Proof Ideas
(Multivariate Functions)

• Lower Bound: Utilizes the fact a fixed ReLU neuron cannot much correlate with parity in .


• By definition any function with finite -norm admits an integral representation.


• Linear terms does not correlate with parity

𝕃2(ν)

ℛ
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1 = 𝔼x∼ν[ f(x)χ(x)] = ∫ 𝔼x∼ν[σ(b⊤x + c), χ(x)]ρ(db, dc) ≤ |ρ | sup
b,c

𝔼x∼ν[σ(b⊤x + c), χ(x)]

f(x) = ∫ σ(b⊤x + c)ρ(db, dc) + b⊤
0 x + c0

Theorem.   
   For function  that fits the parity dataf : 𝒳 → ℝ

inf {∥f∥ℛ : ∥χ − f∥𝕃∞(ν) = 0} = Θ(d)



Recap

• -norm is a functional norm with connections to neural network training.


• -norm regularization which enjoys adaptivity to low dimensional structure. 


• Our results demonstrate some limitations of that for certain data distributions.

ℛ

ℛ
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Other Contributions

• We further study the generalization properties of -norm interpolators. 


• When  with high probability all minima approximates the parity well.


• When  with constant probability all minima are far from the parity function.


• This separation phenomenon between ridge and multidirectional functions remains for other distributions 
analogous to parity. 


• Experiments indicating training with SGD prefer low variational norm functions.


• Comparing architectures which forces low dimensional structure as opposed to fully connected nets.

ℛ

n = Ω̃(d3)

n = õ(d2)
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Thank you!
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