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1.0 Introduction

We discuss theoretical topics at the interface of online learning and repeated
games. In the first two sections we motivate the Blackwell Approachability
Theorem and its generalization by potential-based approachability. We then
shed light on Vovk’s mixability condition for loss functions and applications of
regret bounds to auction pricing. We connect these ideas to the subject of Cor-
related Equilibria in game theory by proving existence of a calibrated forecaster
in the appendix. An overarching principle throughout our discussion is given
by the minimization of potential functions which measure the forecaster’s diver-
gence from her goal. Much of the material is inspired by [PLG] as well as the
papers [MSC, ABH]. We hope this report can serve as a focused introduction
to ideas that we found insightful in this area.

1.1 Minimax Theorem and Blackwell Approachability

One interesting connection between learning theory and game theory is that the
classical Minimax Theorem of von Neumann can be used to show the existence
of a boosting algorithm. In game-theoretic language, this theorem guarantees
the row player a mixed strategy for the zero-sum game with loss matrix A which
limits her loss – equivalently, the column player’s payoff – to the minimax loss
(the ”value of the game”).

Theorem 1. (Minimax Theorem, von Neumann (1929)) Let A ∈ Rn×m and
let 4(S) denote the set of probability distributions on a set S. Then we have
the following:

min
p∈4([n])

max
h∈[m]

p>Aeh = max
w∈4([m])

min
i∈[n]

e>i Aw

Under the assumption of ”no-regret” learning (defined below), a slight gen-
eralization of the minimax theorem can be shown as follows. The following
argument appears in [ABH]. Consider a repeated game in which the row player
(resp. column player) makes the decision xt ∈ X (yt ∈ Y) at round t, and define
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the regret incurred by the row player as

RegretrowT =

T∑
t=1

x>t Ayt −min
x
x>

T∑
t=1

Ayt.

The regret of the column player is similarly

RegretcolT =

T∑
t=1

x>t (−A)yt −min
y

T∑
t=1

x>t (−A)y = max
y

T∑
t=1

x>t Ay −
T∑
t=1

x>t Ayt.

Suppose that both players are able to make decisions such that their regrets
are o(T ) (such strategies are termed no-regret). Since the sets X ,Y are convex
and compact (they are probability simplices on the players actions), they are
closed under taking averages, and extrema of continuous functions on X × Y
are achieved. It follows that

1

T

T∑
t=1

x>t Ayt =
RegretrowT

T
+ min

x
x>A(

1

T

T∑
t=1

yt) ≤ o(1) + max
y

min
x
x>Ay

and likewise

1

T

T∑
t=1

x>t Ayt = max
y

(
1

T

T∑
t=1

xt)
>Ay − RegretcolT

T
≥ min

x
max
y

x>Ay − o(1)

which gives maxy minx x
>Ay ≥ minx maxy x

>Ay. Also,

min
x
x>Ay ≤ x>Ay ∀x ∈ X , y ∈ Y =⇒ max

y
min
x
x>Ay ≤ max

y
x>Ay ∀x ∈ X

=⇒ max
y

min
x
x>Ay ≤ min

x
max
y

x>Ay

so maxy minx x
>Ay = minx maxy x

>Ay. Thus, the classical minimax theorem
can be recovered from the existence of no-regret strategies for repeated games.

The significance of the minimax theorem historically motivated the question of
what can be said when the losses are vectors in Rd instead of scalar. This can
model the situation of multiple loss types, as well as the N -experts problem
(Example 2 below). In the work of Blackwell [B], an especially useful condition
was identified as whether or not the row player can guarantee that the euclidean
distance of her average loss vector to a desired subset of Rd converges to zero.
Accordingly, we have the following definition:

Definition 1. S ∈ Rd is called approachable [PLG], §7.7 if a strategy exists
for the row player such that, for any sequence of plays by the column player, we
have

lim
T−→∞

d(
1

T

T∑
t=1

`(It, Jt), S) = 0 a.s.
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As mentioned in Blackwell’s original paper, the notion of approachability was
motivated by the following property of repeated zero-sum games. We will show
that no matter how the column player plays, the row player’s minimax strategy
guarantees that the average loss asymptotically approaches to the set (−∞, V ]
almost surely (Ex. 7.7 in [PLG]), where V is the value of the game.

Theorem 2. In a repeated zero-sum game with scalar loss matrix A, the set
(−∞, v] is approachable if and only if v ≥ V .

Proof. Let It, Jt denote the realized row and column player actions at time
t, and Et[·] denote the expectation conditional on the row player’s past plays
I1, . . . , It−1 and on Jt. Suppose the row player chooses her action according to
the minimax strategy x every round, and let yt ∈ 4([m]) be the column player’s
mixed strategy at time t. Then by the minimax theorem,

Et`(It, Jt) = x>AeJt ≤ max
y

x>Ay =: V

and by the law of iterated expectation

E`(It, Jt) = EEt`(It, Jt)

which implies `(It, Jt)−Et`(It, Jt) is a martingale difference sequence bounded
by maxi,j aij −mini,j aij =: c. By the Azuma-Hoeffding inequality, we have for
any ε > 0

P(
1

T

T∑
t=1

`(It, Jt)−
1

T

T∑
t=1

Et`(It, Jt) > ε) ≤ e−2Tε2/c2

Since
∑∞
T=1 e

−2Tε2/c2 <∞, the Borel-Cantelli lemma implies that

lim sup
1

T

T∑
t=1

`(It, Jt)−
1

T

T∑
t=1

Et`(It, Jt) ≤ ε a.s.

and thus

lim sup
1

T

T∑
t=1

`(It, Jt)− V ≤ ε a.s.

By applying the same argument from the perspective of the row player (con-
ditioning on the column player’s past, and bounding the left tail), the column
player can guarantee that

lim inf
1

T

T∑
t=1

`(It, Jt) ≥ V − ε a.s.

Blackwell’s approachability theorem provides necessary and sufficient conditions
for approachability of convex sets in the case of vector-valued losses:
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Theorem 3. (Blackwell’s approachability theorem). A convex set S is approach-
able if and only if every halfspace H ⊃ S is approachable.

Note that approachability of limit points is equivalent to approachability of
S, so that S may be assumed closed and convex without loss of generality.
The proof of this result essentially reduces to the case of scalar losses: indeed,
by Theorem 2, a halfspace H = {u ∈ Rd : 〈u, a〉 ≤ v} parameterized by
a ∈ Sd−1 is approachable if and only if the value of the game with (scalar)
loss matrix 〈`(i, j), a〉 is at most v. This, in turn, guarantees the existence of a
mixed strategy which keeps the loss within the halfspace. Iterated orthogonal
projections of the average loss vector onto S can then be used to construct a
sequence of halfspaces containing S, and this way one obtains an algorithm for
approaching S [cf. PLG, Thm. 7.5 for the proof].

Example 1. Suppose that the loss matrix is circulant, i.e., `(i, j) = `(i + 1
mod n, j + 1 mod m), where n divides m. Then S is approachable if and only
if S contains the ”center of mass” 1

nm

∑
i,j `(i, j) ∈ Rd. By playing a uniform

mixed strategy at every round, each player can ensure the sequence of losses
is i.i.d. and uniform on the set of loss vectors, which ensures the average loss
converges almost surely to the center of mass by the strong law of large numbers.

Example 2. (N-Experts) While the notion of vector-valued loss may at first
seem unintuitive, the N -experts setting provides a case of special interest. In
this case the ”column player” corresponds to ”nature” which selects an outcome
yt ∈ [m] at time t. The forecaster chooses an expert It and incurs scalar loss
`(It, yt), while the experts incur losses `(k, yt), k = 1, . . . , N . By forming the
vector-valued loss matrix with (i, j)th entry (`(i, j)−`(1, j), . . . , `(i, j)−`(N, j)),
the existence of a Hannan consistent (or no-regret) strategy is converted to the
approachability of the nonpositive orthant RN

− = {u : u1, . . . , uN ≤ 0}, since
the average loss in this game is the average regret vector

1

t
Rt =

1

t

t∑
s=1

(`(Is, ys)− `(1, ys), . . . , `(Is, ys)− `(N, j)).

Note that the nonpositive orthant is particularly well structured for approach-
ability, since it suffices to consider halfspaces passing through 0 whose normal
vectors a lie in the positive orthant (any other halfspaces containing RN

− are
approachable if these halfspaces are). Also, while the proof of the approacha-
bility theorem does not in general suggest an explicit mixed strategy at time t
(its existence is merely a consequence of the minimax theorem), in the case of
orthant approachability, it can be calculated in simple form in terms of the nor-
mal vector of the corresponding halfplane divided by the sum of its components,
as shown in the next section.

1.2 Potential Based Approachability

Hart and Mas Colell [MSC] used the same algorithmic idea in Blackwell’s proof
of the approachability theorem to come up with a class of strategies for ap-
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proaching a convex set. As mentioned, the original proof relies on projection
onto the target set, which is well defined and computationally feasible under
the convexity assumption. Therefore, it is natural to ask what happens if we
change the notion of ”distance” from the current state to S. This would result
in different projections onto the set, and thus, new strategies to approach a
given set. The idea is to define a potential function on the space Rd and try
to move in the directions that decrease the potential. This is analogous to an
energy functional minimized by a physical system. Let Φ : Rd 7→ R+ be a twice
differentiable convex function which plays the role of potential and indicates
how close we are from the equilibrium state. Since the goal is to reach the set
S, we need to impose the condition that Φ vanish on S and take positive values
outside of S. For instance, Φ(x) = infy∈S ||y − x||2 satisfies these conditions and
∇Φ(x) corresponds to the orthogonal projection of x onto S used in Blackwell’s
original proof. Now the main idea is to use strategies which keep the loss vector
oriented towards S and then track progress of the potential function at every
stage instead of d( 1

T

∑T
t=1 `(It, Jt), S), which is the quantity of interest. Recall

that by the argument given in section 1.1, we have the following:

Corollary 1. A halfspace H = {u ∈ Rd : 〈u, a〉 ≤ v} is approachable if and
only if there exists a mixed strategy p ∈ 4([n]) for the row player such that:

max
j∈[m]

〈`(p, j), a〉 ≤ v

Definition 2. (Bregman’s Projection.) For every x /∈ S we can define a unique
projection point on S:

ΠS(x) := arg min
y∈S

Φ(y)− Φ(x)− 〈∇Φ(x), y − x〉 = arg max
y∈S
〈y,∇Φ(x)〉

Note that this projection is not necessarily based on a norm since the argument
inside does not satisfy the triangle inequality; however, it has the properties
that we need to replicate the algorithm in Blackwell’s original proof.

Definition 3. (Support of Convex Sets.) For every x ∈ Rd and convex set S we
may define u(x) := maxy∈S 〈y, x〉 to be the support function of S. Furthermore,
we have ∇u(x) = arg maxy∈S 〈y, x〉. It is also referred to as the conjugate
function of the indicator of S.

Let us consider hyperplane passing through ΠS(x) with normal vector ∇Φ(x).
Since S is approachable, the existence of the following potential strategy p ∈
4(n) for every point x /∈ S is guaranteed by the Corollary 1.:

max
j∈[m]

〈`(p, j),∇Φ(x)〉 ≤ u(∇Φ(x)) (?)

It is worth mentioning that explicitly constructing such strategies p is problem
dependent, but in some problems of interest, such as N-Experts and Calibration,
the strategy can be easily calculated in terms of the gradient of Φ. We may define
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the current state xt ∈ Rd as the following:

xt :=
1

t

t∑
s=1

E[`(Is, Js)|I1:s−1, Js] =
1

t

t∑
s=1

`(ps, Js)

Where pt is a strategy that satisfies (?) at xt−1. Looking at the evolution vector
xt+1 − xt = 1

t (`(pt, Jt)− xt) which is shown in red in the figure below, one can
easily observe that (?) implies this is a descending direction regardless of the op-
ponent’s action, which leads the average loss closer to the target set. Therefore,
moving infinitesimally along this direction should decrease the potential.

∇Φ(x)
x

ΠS(x)

`(p, j)

{y : Φ(y) = Φ(x)}
S

Figure 1: As an old saying ”A picture is worth a thousand words”!

Theorem 4. Let S ⊆ Rd be a closed convex set which is approachable. Let
Φ : Rd 7→ R+ be a twice differentiable convex function vanishing on S and
positive outside of S. Then if the row player follows a potential based strategy
which satisfies:

max
j∈[m]

〈`(pt, j),∇Φ(xt)〉 ≤ u(∇Φ(xt))

Then regardless of the column player’s actions:

Φ(
1

T

T∑
t=1

`(It, Jt)) = O(
log(T )

T
)

In particular, we have d( 1
T

∑T
t=1 `(It, Jt), S) −→ 0 a.s.
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The proof is basic and just uses standard convex analysis which can be found
in [PLG] §7.8, [MSC], but relies heavily on the 1

t scaling of the cumulative
loss. As a direct consequence of this powerful theorem, one can form a class of
Hannan consistent strategies. To that end, one needs to prove approachability
of the nonpositive orthant, or equivalently, approachability of halfspaces with
normal vector in Rd

+. Recall that `(i, j) := (`(i, j)− `(1, j), . . . , `(i, j)− `(N, j))
represents the loss vector in this context. By choosing p to be proportional to
the normal vector ∇kΦ, we can satisfy the condition in Corollary 1:

〈`(p, j),∇Φ〉 =

N∑
i=1

N∑
k=1

pi(`(i, j)− `(k, j))∇kΦ

= (

N∑
k=1

∇kΦ)(

N∑
i=1

pi`(i, j))−
N∑
k=1

∇kΦ`(k, j) = 0

Note that Φ can be any convex function which is zero only on Rd
−. Consequently,

the gradient is an element of the positive orthant and therefore becomes a
legitimate probability vector by the correct normalization.

1.3 Mixability of Loss Functions

A key principle in potential-based forecasting is that the value of the potential
function at time t should not escape too far from the initial potential Φ(0). In
the case of the exponential potential Φη(Rt) = 1

η log
∑
i e
ηRt,i , preventing the

potential from ever increasing ensures a regret bound uniform in the number of
rounds t: we have

max
i

Rt,i ≤ Φη(Rt) ≤ Φη(0) =
logN

η

The property of nonincreasing potential can be seen to lead to the class of so-
called mixable loss functions (and its subclass of exp-concave losses) as follows.
Consider again the N−experts setting, and let

qi,t−1 =
e−ηLt−1,i∑
j e
−ηLt−1,j

, i = 1, . . . , N

be weights given by the exponential potential, Lt,i =
∑
s≤t `s,i be the cumulative

loss of the ith expert at time t, Rt,i = Lt − Lt,i be the forecaster’s regret with
respect to the ith expert, and rt be the vector of instantaneous regrets `t − `t,i.
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We have

Φη(Rt−1) ≥ Φη(Rt−1 + rt)

⇐⇒
∑
i

eη(Lt−1−Lt−1,i) ≥
∑
i

eη(Lt−1−Lt−1,i+`t−`t,i)

⇐⇒ e−η`t ≥
∑
i

e−η`t,i
e−ηLt−1,i∑
j e
−ηLt−1,j

⇐⇒ `t ≤ −
1

η
log

∑
i

e−η`t,iqi,t−1.

The exp-concave losses are defined by concavity of exp(−η`(·, y)); this imme-
diately ensures the above inequalities hold. From this angle, the notion of a
mixability curve introduced by Vovk in [V] specifies general conditions under
which this property, and consequently, uniform bounds, hold. Formally,

Definition 4. The mixability curve of a loss function ` : X ×Y → R is defined
as

µ(η) := inf
{
c > 0 : ∀N, ∀(q1, . . . , qN ) ∈ 4([N ]) (the weights on each expert),

∀(I1, . . . , IN ) ∈ X (the expert predictions),

∃ p : no matter the outcome y ∈ Y,

`(p, y) ≤ − c
η

log
∑
i

e−η`(Ii,y)qi

}
Theorem 5. Suppose the decision space X is compact, the loss function ` is
continuous in its first argument, ∃ I : `(I, y) <∞ ∀ y, and 6 ∃ I : `(I, y) = 0 ∀ y.
Then µ(η) ≥ 1.

The proof of this result is in Vovk’s paper and follows by contradiction: suppos-
ing ∃ c < 1 satisfying the property in Definition 1, one can construct a sequence
of decisions (I(j))∞j=1 such that lim `(I(j), y) = 0 ∀ y. By compactness, the limit
point exists in X , and by continuity of ` the limit point violates the last as-
sumption. In terms of the parameterization above, it is also shown in [V] that
µ(η) is a continuous and increasing function of η. It follows from the definition
of mixability that we have

Lt ≤ µ(η) min
i
Lt,i +

µ(η)

η
logN ∀t ≥ 1

and so the largest η such that µ(η) = 1 (if it exists for the ` in question) gives
the best bound on the forecaster’s loss/regret. It is also shown in the main
theorem of [V] that the mixability curve η > 0 7→ (η, µ(η)) in fact determines
the best achievable constants in bounds of the above form. Examples of mixable
losses are given in [PLG] §3.6 and are thus of special interest to the analysis of
sharp regret bounds.
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1.4 Auctions

An interesting application of the expert advice setting is in designing nearly
optimal auctions. Myerson ([GTA], §14.9) characterised the single-item auction
which optimizes the auctioneer’s revenue, denoted OPT := maxp∈[0,1] p(1− F (p)).
Each bidder’s valuation for the item is drawn from the distribution F , which
is known to the auctioneer (a practically questionable setting). Although one
might think that achieving this optimal revenue is hopeless without enough in-
formation about bidder values, one can in fact learn this distribution sequentially
through holding an auxiliary auction repeatedly and by changing the allocation
and payment rule in each round in a clever manner so that the auctioneer has
vanishing regret. In other words, the per-round revenue of the auctioneer will
eventually be as though they knew the underlying distribution in hindsight and
acted optimally. The main advantage of the latter auction is its robustness
where there are no underlying statistical assumptions on the bidders’ valua-
tions. The idea is, instead of revealing the bids simultaneously, to hold private
auctions with each bidder individually (note that this is only feasible for goods
with infinite supply) and sell the item to the current bidder at that price if
their bid was higher than our proposed price and then adjust our price for the
next round based on the new obtained information. This is called the Take-
It-Or-Leave-It mechanism. Usually, auction designers are constrained to design
truthful auctions, meaning that bidders only bid their true valuation of the item,
so that the auctioneer can obtain useful information to maximize their profit.
Indeed, the proposed auction is truthful since no one has an incentive to buy
an item higher than their valuation and they don’t want to lose the chance to
buy the item when the price is lower than their valuation. Formally:

Definition 5. In a Take-It-Or-Leave-It online auction with n bidders, we per-
form the following at round t:

• The auctioneer computes a price pt ∈ [0, 1], which can depend on past
information denoted Ft−1,

• The auctioneer and bidder at round t reveal their price and bid simulta-
neously. The item is sold at price pt if the bid vt is higher than pt.

The main idea to come up with pricing strategies is to discretize the set of
prices and treat each one as an expert. Let us take P := { 1

N ,
2
N , ..., 1} ⊆ [0, 1]

to represent the set of our experts. In other words, expert i always suggests to
use price i

N for the item. Now the auctioneer revenue at round t is defined as
g(pt, vt) := pt1{vt ≥ pt} (note that this gain is not convex in its first argument)
and the ith expert obtains a gain equal to rt,i = i

N 1{vt ≥ i
N }. This choice of

gain is natural since we are trying to deduce something about the revenue of the
auction. Now we can obtain regret bounds by adopting a polynomial weighting
algorithm. The pricing strategy can be implicitly formulated by the following:

pt =

∑N
i=1 w

t
i
i
N∑N

i=1 w
t
i

, wti = wt−1
i (1− ηrt,i)
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Theorem 6. If the auctioneer sells the item in each round based on polyno-
mial weighting pricing, then the auctioneer has no regret. In particular, if
bidder valuations (vi)i≤n are drawn independently from an underlying distri-
bution F (·) then the average per round revenue will converge to the optimal
revenue. Moreover, the rate of convergence can be characterized as follows:∑n
t=1 g(pt,vt) ≥ nmaxp∈[0,1] p(1− F (p))−Op(

√
n log(n))

The ideas of this proof were gathered from [PM]. Based on regret bounds
for polynomial weighting strategies [PLG] §4 for arbitrary bounded losses, we
have:

n∑
t=1

g(pt,vt) ≥ max
p∈P

n∑
i=1

g(p,vt)− nη −
log(N)

η

≥ max
p∈P

p|{i : vi ≥ p}| − nη −
log(N)

η

≥ sup
p∈[0,1]

p|{i : vi ≥ p}| −
n

N
− nη − log(N)

η

Where the last inequality comes from the fact that if we reduce the optimal
price down to bNpc/N , then the price will be perturbed by at most 1

N , and so
the total revenue will be reduced by at most n

N . By choosing N, η optimally,
we get the best lower bound one can get:

n∑
t=1

g(pt,vt) ≥ sup
p∈[0,1]

p|{i : vi ≥ p}| −O(
√
n log(n))

Note that this regret bound holds for all valuation sequences (in particular,
without statistical assumptions). Now, by combining the Rademacher Com-
plexity bound for the class of indicators {p 7→ 1{v ≥ p}, v ∈ [0, 1]} having VC
dimension 1 and Azuma-Hoeffding, we have the following with probability at
least 1− δ:

sup
p∈[0,1]

|
n∑
i=1

1{vi ≥ p} − n(1− F (p))| ≤ 2
√

2n log(2n) +

√
n log(

2

δ
)

To reiterate, the power of this algorithm stems from the information acquired
by observing bidders’ values for the item in each round so we can calculate what
would have been our revenue had the auctioneer chosen different prices. This
is equivalent to saying we observe the incurred loss for each individual expert.
Similar results can be achieved in more limited feedback settings. The following
problem arises in the context of dynamic pricing where instead of performing an
auction, there is a price tag for the item at each round and customers buy the
item in the same sequential manner with the slight difference that they won’t
reveal their values. In this setting the only information seller can obtain at each
round is whether that internal value was higher or lower than the current price
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tag, which is analogous to the Multi-Armed Bandit problem, since only the loss
of the current expert in use is observed.

1.5 Discussion

The idea for this report came from Professor Hsu’s suggestion of the paper [V].
Subsequently, we found the book [PLG] and related papers [ABH, MSC]. For
lack of time and space, we could not include material that interested us on
the subjects of network routing, data compression, and computational issues
that arise in implementation of online forecasting methods with large space
complexity.
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Appendix: From Correlated Equilibria to Calibration

Although one can easily show for a repeated game that if both players adopt
some Hannan consistent strategy, then the product empirical distribution of
players actions denoted by p̂t × q̂t where p̂t,k = 1

t

∑t
i=1 1{It=k} will converge

to the set of Nash equilibria p × q almost surely, the empirical joint will not
necessarily converge to that set. In fact, it will converge to a set called Hannan
set [PLG] §7.4 which contains all the Correlated equilibria. This raises the
question of whether the Hannan set is the smallest that we can jointly converge
to. The answer is no, and by introducing a stronger notion of regret called
internal regret we prove existence of strategies for players to jointly converge
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to the set of correlated equilibria contingent on controlling internal cumulative
regret (see [PLG] §7.4). Internal Regret for the row player is defined as follows:

r̂(i,i′ ),t = 1{It=i}(`(i, Jt)− `(i
′
, Jt))

In other words, cumulative internal regret R̂(i,i′ ),T = 1
T

∑T
t=1 r̂(i,i′ ),t measures

the difference of what could have been the row player’s loss had she played
action i

′
every time he played i. Recall that correlated strategies in a 2 player

game corresponds to the situation where every player obtains a suggested action
from a vector (I, J) drawn from the joint distribution P and then decides which
action to play. Equilibrium holds when no player has an incentive to deviate
from the suggested action. Moreover, if row player knew P then P(J |I) would
be the best guess for her to predict the column player’s action. Therefore, P is a
Correlated equilibrium if and only if action i is the best response to P(.|I = i).
The goal is to ensure the empirical joint distribution converges to a Correlated
Equilibrium but the issue is the limiting distribution is not known to the row
player in advance. The remedy is to estimate it! In order to do this players
should predict mixed strategies which their opponents are going to use in the
next round and play the best action as if the opponent were using that predicted
strategy. Let us denote the row player’s prediction of the opponent’s strategy
at round t to be q̂t. Then the estimate of the joint distribution from the row
player’s point of view is:

P̂T (i, j) =
1

T

T∑
t=1

1{q̂t∈B̂i}1{Jt=j}

where B̂i is the set of column player’s mixed strategies q to which best respond
for row player is to play action i. By the preceding argument if we let J t = eJt ∈
Rm then the following motivates the row player to use a calibrated forecast for
estimating the opponent’s strategy:

P̂T (.|j) =

∑T
t=1 J t1{q̂t∈B̂i}∑T
t=1 1{q̂t∈B̂i}

Theorem 7. In a 2-player repeated game, if both players play the best response
action to a calibrated forecast of their opponent’s mixed strategy, then their joint
empirical distribution will converge to the set of Correlated Equilibria almost
surely.

See [PLG] §7.6 for a detailed proof. Note that existence of a calibrated
forecaster can be seen in view of existence of a vanishing internal cumulative
regret strategy (see [PLG] §4.5) which can be constructed by the means of
Blackwell approachability. To this end, one may consider the loss matrix:

`(i, j) = [r̂(k,s)]k,s = [1{k=i}(`(i, j)− `(s, j))]k.s ∈ Rn×n
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In order to control internal cumulative regret

max
i,i′

1

T
R̂(i,i′ ),T = max

1

T

T∑
t=1

`(It, Jt)

where the second max is over the elements of the matrix argument, one is
required to show S = Rn×n

− is approachable. Thus, by the Corollary 1, we
need to prove such a strategy p exists for a hyperplane with normal matrix
A ∈ Rn×n

+ such that the loss matrix lies in the halfspace which contains S. In
fact, a stronger result holds and one can prove a strategy p exists such that the
expected loss matrix lies on the hyperplane:

tr(A>`(p, j)) =

n∑
i=1

pi

n∑
s=1

Ai,s(`(i, j)− `(s, j))

=

n∑
i=1

`(i, j)(pi

n∑
s=1

Ai,s)−
n∑
s=1

`(s, j)(

n∑
i=1

piAi,s)

=

n∑
i=1

`(i, j) (pi

n∑
s=1

Ai,s −
n∑

i′=1

pi′Ai′ ,i)︸ ︷︷ ︸
Coefficients

= 0

The above holds if all the coefficients for losses become zero. It is sufficient
to show a valid solution exists for the linear system p>Ã = p where Ãi,j =

Ai,j∑n

i
′
=1
A

i
′
,j

is a column stochastic matrix. This is implied by the Perron-Frobenius

theorem. As mentioned before, these probability vectors can be calculated ex-
plicitly and it only depends on the normal vector in that round.
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