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• High Dimensional Regression and 
Classification 

• Regression: 
Min Norm Linear Regression 
(OLS) 

• Classification: 
Max Margin Linear Classifier 
(SVM)
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Support Vectors



Surprise in High Dimensional Regression and Classification: 

OLS = SVM 

Support Vector Proliferation (SVP)
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Inductive bias

• The inductive bias is simply the set of assumptions that learner makes about inherent 
properties of the data. 


• Deep learning practice:


• Choice of architecture, e.g. CNN, Resnet18, etc.


• Choice of loss function, e.g. square loss, logistic loss, etc.


• Choice of optimization procedure, e.g. GD, SGD, Mirror Descent, etc. 

• All these choices constitutes as inductive bias!




Inductive bias - regression

• Question: Given samples  what is the inductive bias 
of certain optimization procedures for linear regression?


• Linear Regression: .


• The goal of ERM learner is to find an estimator/classifier  such that it 

minimizes the empirical risk, .


• When , there could be infinitely-many minimizers in .


(x1, y1), …, (xn, yn) ∈ ℝd × ℝ

ℋ = {x ↦ w⊺x}
hw(x) = w⊺x

R̂(hw) =
1
n

n

∑
i=1

(yi − hw(xi))2

d > n arg min
h∈ℋ

R̂(h)



Inductive bias - regression

• Minimum -norm interpolators ( -OLS) can be obtained by Steepest Descent on 
the dual norm [Gunasekar, et al. ’18]. 

ℓp ℓp

 Theorem: [Werner Engl, et al. ‘96]  
   For a feasible set of linear equations, the evolution of GD with initialization 
   at zero converges to the minimum Euclidean norm linear interpolator (OLS), 
               lim

t→∞
wt = arg min

w∈ℝd
∥w∥2 s.t. w⊺xi = yi .



Inductive bias - classification

• Question: Given  samples, what is the inductive 
bias of certain optimization procedures for logistic regression?


• Logistic regression: .


• The goal is to minimize .


• Linear separable: there exists a linear classifier with zero training classification error.


• When data is separable there may be infinitely-many empirical minimizers at infinity.

(x1, y1), …, (xn, yn) ∈ ℝd × {±1}n

ℋ = {x ↦ w⊺x ∣ w ∈ ℝd}

R̂(hw) =
1
n

n

∑
i=1

log(1 + e−yihw(xi))
w1

w2



Inductive bias - classification

• Similar result hold for -norm hard margin support vector machines ( -SVM) with 
Steepest Descent dynamics [Gunasekar, et al. ’18].


• In particular -SVM is closely related to infinitely wide 2-layer networks 
[Neyshabur, et al. ’14] [Chizat, et al. ’18] and Adaboost [Rosset, et al. ’04].

ℓp ℓp

ℓ1

 Theorem: [Soudry, et al. ’18]  
   For linearly separable data, the evolution of GD with any initialization 
   converges to the hard margin support vector machine (SVM),

lim
t→∞

wt

∥wt∥2
=

w*
∥w*∥2

, w* = arg min
w∈ℝd

∥w∥2 s.t. yiw⊺xi ≥ 1.



Inductive bias

• Generalization properties of OLS in high 
dimensions is widely studied and 
characterized. 


• Benign overfitting in -OLS 
[Bartlett, et al. ’19] 
[Hastie, et al. ‘19] 

• Benign overfitting in -OLS 
[Wang, et al. ’22][Li, et al. ’21]


• Benign overfitting in -OLS 
[Wang, et al. ’22]

ℓ2

ℓ1

ℓp

• Less is known regarding generalization 
properties of hard margin SVM in high 
dimensions. 

• Generalization behavior for -SVM  
[Muthukumar, et al. ’21] 
[Chatterji, et al. ’20] 

• Generalization behavior for -SVM  
[Donhauser, et al. ’22][Chinot, et al. ’21]


• Generalization behavior for -SVM  
[Donhauser, et al. ’22]

ℓ2

ℓ1

ℓp
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Classification vs. regression

(xi, yi)i≤n ∈ ℝd × {±1}

Classification task

Linear regression Logistic regression

min ∥w∥2

x⊺
i w = yis.t.

OLS SVM

min ∥w∥2

yix⊺
i w ≥ 1s.t.

[Muthukumar, et al. ’21]

Square loss Logistic loss



Support vector proliferation

• What does OLS=SVM mean?


• SVM classifier interpolates the data.


• All samples must become support vectors.


• This situation was classically considered to 
generalize poorly, 
 

• However, “Good” generalization properties of 
OLS carries over to SVM in these regimes.

Classification vs. regression

min ∥w∥2

x⊺
i w = yis.t.

min ∥w∥2

yix⊺
i w ≥ 1s.t.

SVM Complexity  # Support Vectors↔



Classical SVM generalization bounds
• SVM Complexity  # Support Vectors


• When fraction of support vectors is , then SVM generalizes. [Graepel, et al. ‘05]


• Sample compression based bounds. 


• Dropping non support vector samples still yields the SVM same classifier 


• Distribution free, thus widely applicable. 


• This sparsity in #SV can happen in underparameterized  
asymptotic regimes.


• Different story in overparameterized regimes (e.g. when OLS=SVM)

↔

o(1)



OLS = SVM and its implications
• “Good” generalization properties of OLS carries over to SVM in these regimes. 

• Classification is (thought of to be) “easier” than regression. 

• Using this coincidence [Muthukumar, et al. ’21] shows a regime where classification 
is consistent but not regression, under a spiked covariance model on features. 

Fig. From [Muthukumar, et al. ’21]

ℙ [yhw(x) < 0] ≤ 𝔼 [(1 − yhw(x))2]

Regression consistency  Classification consistency⟹

Normalized 
Margin is Ω(1)
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Our results
• Data model: Labels are fixed and features are anisotropic Gaussian 

• Effective ranks: let  be the eigenvalues of  
 
 
 
 
 
 
 

• For isotropic Gaussian features 

λ1 ≥ λ2 ≥ … ≥ λd Σ

deff = d∞ = d

xi ∼ 𝒩(0,Σ) ∈ ℝd, yi ∈ {±1}, 1 ≤ i ≤ n

 Theorem: [Our work]  
   Given  samples (as above) assume , and the 
   absence of a single strong feature, then w.h.p. OLS  SVM.

n deff = O(n log n), d∞ = Ω(n)
≠

deff = ( tr(Σ)
∥Σ∥F )

2

= ( ∥λ∥1

∥λ∥2 )
2

, d∞ =
tr(Σ)
∥Σ∥op

=
∥λ∥1

∥λ∥∞



Comparison with previous works

• [Muthukumar, et al. ’20]


• [Hsu, et al. ’21]


 

• [Our work] 

Question: For what  do we have OLS=SVM with high probability? deff = deff(n)

deff

𝒩(0,Σ)
OLS = SVM 

Cn log n

OLS  SVM≠
𝒩(0,Id)

cn

Anisotropic Subg.
OLS = SVM

OLS  SVM≠
Anisotropic Subgaussian

cn log n

𝒩(0,Id)𝒩(0,Id) 2n log n
OLS  SVM≠ OLS = SVM{



Asymptotic comparisons

 Theorem: [Our work]  
   For isotropic Gaussian data in the regime where ,d(n) = τn log n

lim
n→∞

ℙ [ #SV
n

= 1] = {0 τ < 2
1 τ > 2

 Theorem: [Buhot, et al. ’01]  
  For isotropic Gaussian features in the proportional regime , then 
  the fraction of support vectors in the SVM converges w.h.p to,

d(n) = αn

lim
n→∞

#SV
n

=
0.952α α ≪ 1

1 − 2
πα e− α

2 α ≫ 1

(Underparameterized)

(Overparameterized)
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• The OLS=SVM occurrence is equivalent to, 

• For isotropic gaussian features with ,  
all samples ( ’s) are on the convex hull. 


•  is roughly the same for all the samples.


• The convex hull is almost a regular polygon.


• Intuitively, larger  increases the probability of 
this occurrence.

d ≫ n
yixi

∥xi∥2

d

Geometrical Intuition

𝒫 = AffineHull(y1x1, y2x2, …, ynxn) ⊂ ℝd

y1x1

ynxn

y2x20

Π𝒫(0)

Π𝒫(0) ∈ ConvHull(y1x1, …, ynxn) .
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• Proof intuition:  using duality.


•  is a hyperplane passing through 


• Origin and the i’th sample should be on the same side of this hyperplane.


• Otherwise the i’th sample is “unnecessary” for SVM

w(i)
OLS =

Π𝒫∖i
(0)

∥Π𝒫∖i
(0)∥2

2

⟨ u , w(i)
OLS ⟩ − 1 𝒫∖i

Proof ideas
Features for sample i

Label for sample i

Affine space when 
sample i is excluded.

xi
yi

𝒫∖i

Key lemma [Hsu, et al. ’20][Our work]   
  Let   be the projection onto  using -norm. Π𝒫 𝒫 = AffineHull(y1x1, …, ynxn) ℓ2

⟺max
i≤n ⟨ yixi ,

Π𝒫∖i
(0)

∥Π𝒫∖i
(0)∥2

2 ⟩ < 1 OLS = SVM

yixiy1x1

ynxn
0

Π𝒫∖i

Π𝒫(0) ∈ ConvHull(y1x1, …, ynxn)⟺



• For  explicit solutions for OLS is known:


• We use this lemma to prove lower bounds on the dimension. 

ℓ2

Proof ideas
Features for sample i

Label for sample i

Affine space when 
sample i is excluded

Collection of 
samples except I

xi
yi

𝒫∖i

w(i)
OLS =

Π𝒫∖i
(0)

∥Π𝒫∖i
(0)∥2

2
= X⊺

∖i (X∖iX⊺
∖i)

−1
y∖i

Key lemma [Hsu, et al. ’20][Our work]   
  Let   be the projection onto  using -norm. Π𝒫 𝒫 = AffineHull(y1x1, …, ynxn) ℓ2

⟺max
i≤n ⟨ yixi ,

Π𝒫∖i
(0)

∥Π𝒫∖i
(0)∥2

2 ⟩ < 1 OLS = SVM Π𝒫(0) ∈ ConvHull(y1x1, …, ynxn)⟺

X∖i



Proof ideas
• Question: For what values  do we have the following with high probability? 

 
 

•  behaves roughly as a .


• if ’s were independent:   


• The correlation among ’s are weak , thus behavior stays the same.

d = d(n)

zi 𝒩 (0,
n
d )

zi max
i≤n

zi = Θp ( 2n log n
d )

zi Θ(
1
d

)

max
i≤n {⟨yixi , X⊺

∖i (X∖iX⊺
∖i)

−1
y∖i⟩}

zi

< 1

Features for sample i

Label for sample i
Collection of 
Features except 
sample iCollection of labels 
except sample i

xi
yi
X∖i

y∖i

⟹ d = Θ(n log(n))

Critical threshold
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Laplacian Radamacher Uniform
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Empirical evidence for universality
• Universality of SVP phenomenon (SVM = OLS) under different feature distributions

Sharp asymptotic  
threshold at d = 2n log n



Empirical evidence for universality
• Statistical methodology inspired by [Donoho, et al. 09]


• We use Probit regression to model the observed  
probability of OLS=SVM. 
 
 
 

• Perform sequential hypothesis test using ANOVA.
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τ

O
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s 
(p̂

)

n
50
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90

τ =
d

2n log n

Number of samples.
Number of features
Distribution under 
which features are 
generated from.
Probit link function

n
d
𝒟
Φ

 Reject⟹
 Fail to reject⟹

O.W.

M0 : μ(i)
j (𝒟) = μ(i)

j

M1 : μ(i)
0 (𝒟) = μ(i)

0
M2 :

p(n, d; 𝒟) = Φ (μ(0)(n, 𝒟) + μ(1)(n, 𝒟)τ + μ(2)(n, 𝒟)log τ)
μ(i)(n, 𝒟) = μ(i)

0 (𝒟) +
μ(i)

1 (𝒟)

n



Open questions

• When does SVM = OLS for other norms? 
 
 
 

• Conjecture: For , SVM = OLS still  
occurs but the threshold is much larger  
function of number of samples .


• Theoretical understanding of universality.

p = 1

n

min ∥w∥p

yix⊺
i w ≥ 1s.t.

min ∥w∥p

x⊺
i w = yis.t.



Thank you!


