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Introduction

High Dimensional Regression and
Classification

» Regression:
Min Norm Linear Regression
(OLS)

 Classification:
Max Margin Linear Classifier
(SVM)
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Surprise in High Dimensional Regression and Classification:

OLS = SVM

Support Vector Proliferation (SVP)
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Inductive bias

 The inductive bias is simply the set of assumptions that learner makes about inherent
properties of the data.

 Deep learning practice:

* Choice of architecture, e.g. CNN, Resnet18, etc.
* Choice of loss function, e.g. square loss, logistic loss, etc.
* Choice of optimization procedure, e.g. GD, SGD, Mirror Descent, etc.

e All these choices constitutes as inductive bias!



Inductive bias - regression

» Question: Given samples (x{,¥,), ..., (x,y,) € | 4 % R what is the inductive bias
of certain optimization procedures for linear regression?

o Linear Regression: # = {x — wa}.

» The goal of ERM learner is to find an estimator/classifier 2, (x) = w!x such that it

o s I ¥ )
minimizes the empirical risk, R(h,,) = — Z (y, — h, (x;)".
n
i=1

When d > n, there could be infinitely-many minimizers in arg min IAQ(h).
hex



Inductive bias - regression

Theorem: [Werner Engl, et al. ‘96]
For a feasible set of linear equations, the evolution of GD with initialization
at zero converges to the minimum Euclidean norm linear interpolator (OLS),

lim w, = arg min ||w|[, S.t. wlx;=y..
[— 00 weR?

e Minimum fp-norm interpolators (£ p-OLS) can be obtained by Steepest Descent on
the dual norm [Gunasekar, et al. '18].



Inductive bias - classification

» Question: Given (x{,y,), ...,(x,,y,) €| 4% {+1}" samples, what is the inductive
bias of certain optimization procedures for logistic regression?

. Logistic regression: # = {x — wix |w el d}.

) ] {
The goal is to minimize R(h,) = — ) log(l + ¢ /@),
n
=1

e Linear separable: there exists a linear classifier with zero training classification error.

 When data is separable there may be infinitely-many empirical minimizers at infinity.



Inductive bias - classification

Theorem: [Soudry, et al. ’18]

For linearly separable data, the evolution of GD with any initialization

converges to the hard n}kargin support vector machine (SVM),
. 4% W .
lim —— = — w* = arg min ||w|, S.t. ywlx;, > 1.
—co [l lIw*ll; weR

« Similar result hold for fp-norm hard margin support vector machines (z,”p-SVM) with
Steepest Descent dynamics [Gunasekar, et al. *18].

e In particular ¢ 1-SVM is closely related to infinitely wide 2-layer networks
[Neyshabur, et al. ’14] [Chizat, et al. '18] and Adaboost [Rosset, et al. '04].



Inductive bias

 (Generalization properties of OLS in high * Lessis known regarding generalization
dimensions is widely studied and properties of hard margin SVM in high
characterized. dimensions.
 Benign overfitting in £,-OLS » Generalization behavior for £,-SVM
[Bartlett, et al. ’19] [Muthukumar, et al. ’21]
[Hastie, et al. ‘19] [Chatteriji, et al. ’20]
 Benign overfitting in £;-OLS « Generalization behavior for £;-SVM
[Wang, et al. '22][Lli, et al. ’21] [Donhauser, et al. '22][Chinot, et al. ’21]
« Benign overfitting in £ p—OLS « Generalization behavior for £ p-SVM

[Wang, et al. '22] [Donhauser, et al. '22]
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Classification vs. regression

Classification task

Square loss Logistic loss

Linear regression Logistic regression

OLS SVM

[Muthukumatr, et al. '21]
————————————————————————————————




Classification vs. regression

Support vector proliferation

 What does OLS=SVM mean? : .
 SVM classifier interpolates the data. - vt

* All samples must become support vectors.

e This situation was classically considered to
generalize poorly,

|

SVM Complexity <> # Support Vectors . .
min |wll,  min |[wi]
« However, “Good” generalization properties of T ,
OLS carries over to SVM in these regimes. S.1. XW =Y; S.1. YiX W > 1



Classical SVM generalization bounds

« SVM Complexity <> # Support Vectors

« When fraction of support vectors is o(1), then SVM generalizes. [Graepel, et al. ‘05]
e Sample compression based bounds.

* Dropping non support vector samples still yields the SVM same classifier

e Distribution free, thus widely applicable.

* This sparsity in #5V can happen in underparameterized
asymptotic regimes.

* Different story in overparameterized regimes (e.g. when OLS=SVM)




OLS = SVM and its implications

“Good” generalization properties of OLS carries over to SVM in these regimes.

P [yh,(x) < 0] <E [(1 = yh,(x))

Classification is (thought of to be) “easier” than regression.

Regression consistency = Classification consistency

Using this coincidence [Muthukumar, et al. ’21] shows a regime where classification
IS consistent but not regression, under a spiked covariance model on features.
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Our results

 Data model: Labels are fixed and features are anisotropic Gaussian
x,;~ N0 eR? y€{£l},1<i<n
- Effective ranks:let A, > 4, > ... > A, be the eigenvalues of 2

L (tr<z>>2=( 2 1)2 Lot Al
AN AL 7 12, 1Al

Theorem: [Our work]
Given n samples (as above) assume deff = O(nlogn),d, = €2(n), and the

absence of a single strong feature, then w.h.p. OLS # SVM.

» For isotropic Gaussian features d,» = d, = d



Comparison with previous works

Question: For what d,- = d,;(n) do we have OLS=SVM with high probability?

e [Muthukumar, et al. ’20] OLS = SVM
A(0,%)
OLS # SVM OLS = SVM
° ) — #
[Hsu, et al. "21] N (0,1) Anisotropic Subg.
OLS # SVM

—

Anisotropic Subgaussian

—
N (0,1;) 2nlogn (0,1,



Asymptotic comparisons

Theorem: [Buhot, et al. ’'01]

For isotropic Gaussian features in the proportional regime d(n) = an, then
the fraction of support vectors in the SVM converges w.h.p to,

S\ 0.952a a <1 (Underparameterized)

lim = 5
n—-»oo N ] —4/—e¢
/104

.
2

a>1 (Overparameterized)

Theorem: [Our work]
For isotropic Gaussian data in the regime where d(n) = tnlogn,

lim[P’[ SV=1]={O T<?2

n— 00 n 1 > 2
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Geometrical Intuition

« The OLS=SVM occurrence is equivalent to,
[1,(0) € ConvHull(y,x4, ..., y,x,) .

» For isotropic gaussian features with d > n,
all samples (y.x;’s) are on the convex hull.

 ||x:||, is roughly the same for all the samples.
 The convex hull iIs almost a regular polygon.

 Intuitively, larger d increases the probability of
this occurrence.

P = AffineHull(y,x, yoXo, ..., . X,) C R

Y1X1
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Features for sample | X i
Label for sample | yl‘
[
Proof ideas oo | P
sample i is excluded. \i

Key lemma [Hsu, et al. ’20][Our work]
Let 11, be the projection onto & = AffineHull(y,x, ..., y,X,) using £,-norm.

I, (0)

i< Tz (0)]13
Q 1o, (9
Proof intuition: w = using duality.
' OLS Iz, (0)]13

. (u, W(()i)Ls ) — | is a hyperplane passing through 9’\1-

 Origin and the i'th sample should be on the same side of this hyperplane.

 QOtherwise the i'th sample is “unnecessary” for SVM



Features for sample i

Label for sample |

Affine space when
sample i is excluded

Proof ideas

Collection of
samples except |

Key lemma [Hsu, et al. ’20][Our work]
Let 11, be the projection onto & = AffineHull(y,x, ..., y,X,) using £,-norm.

15 (0)
max { { yx; — <1< OLS = SVM <> I1,(0) € ConvHull(y,x,, ..., y,x,
I, (0)]13

1<n
» For ¢, explicit solutions for OLS is known:

(i) H‘@\"(O) YT (X )l )_1
w — — . A\ Y\;
OLS ~ Mg (O3~ VATV

 We use this lemma to prove lower bounds on the dimension.



Features for samplei| X;

Label for sample i yi

Collection of Y
Features except \

Collection of labels .
y\z

Proof ideas _

» Question: For what values d = d(n) do we have the following with high probability?

~1
max 4 { vx. . XT (X .XT.) AN
i< { <yl l \7 \i \i y\l> }

—~

<
n
Z; behaves roughly as a /' (O, —) .

d
Critical threshold

_ | 2nlogn \ ( )
if ;s were independent: maxz; = 0, y —> d = O(nlog(n))
i<n _ y,

. The correlation among z;’s are weak ®(—), thus behavior stays the same.

d
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Empirical evidence for universality

Universality of SVP phenomenon (SVM = OLS) under different feature distributions
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Empirical evidence for universality

Statistical methodology inspired by [Donoho, et al. 09]

We use Probit regression to model the observed
probability of OLS=SVM.

p(n.d:2) = ® (41, 2) + uV(n, Dyr + u>n, D)log 7)
m(2)

Jn

Perform sequential hypothesis test using ANOVA.

u(n, D) = g ()

My : i (D) =p!” = Reject
M, : u(2) = 4’ = Fail to reject
M, : O.W.
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Open questions

e When does SVM = OLS for other norms?

min ||w|f, min ||w||, ; L2

1000 - 1000 -

st.oyx'w>1 st xlw=y

750 - 1.00

\J
o)
o

0.75

-~ 0.50
0.00

« Conjecture: For p = 1, SVM = OLS still
occurs but the threshold is much larger

function of number of samples 7.
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 Theoretical understanding of universality. , , , , , , ,
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Thank you!



