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Support vector machines and linear regression coincide with very high-dimensional features
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Our contributions

Suppose we have a classification task with n independent observations
(x;, yi) € R? x {£1},

where the labels y; are fixed. (Assume dataset is linearly separable.)

Hard /,-Norm Margin Suppor Vector Machine (SVM): Linear

- g . .
classifier x — sign(xw,,,) that maximizes {,-norm margin
We = arg min |jwl[,

s.t. yxlw > 1

Minimum /,-Norm Ordinary Least Squares (OLS): Linear

function x — XTWOLS of minimum £, norm that interpolates data

We o = argmin |[w|,
s.t.yxlw =1

Question: For what values d = d(n) do we
have SVM = OLS with high probability?

Remark: Equiv. to all inequality constraints
being tight; all samples are support vectors,
a.k.a. “support vector proliferation (SVP)".

Implications on SVM generalization

Implicit Bias of optimization procedure: Gradient descent
(coordinate descent) on logistic loss converges to the solution of />-norm

(¢1-norm) hard margin SVM |[1, 2].

Generalization: Classical bounds tied good generalization properties of
SVM to paucity of support vectors (or large margins).

#Support Vectors | = Model Complexity |

» Recent line of work, demonstrates high dimensional regimes for SVM
with high complexity (and vanishing margins) but good generalization

using this SVM = OLS coincidence [3].

» “Benign overfitting” in over-parameterized linear regression provides
generalization bounds for OLS [4, 5, 6, 7

» SVP translates benign overfitting bounds to SVM for d = Q(nlog n)
under Gaussian data [3].

Previous work

» Further work found that SVP occurs when d = 2(nlog n) for
anisotropic Subgaussian data and does not occur when d = O(n) for
isotropic Gaussian data [8].

» Limitations:
(1) There is a n vs nlog n gap for SVP threshold
(2) Unclear generality of lower bounds beyond isotropic Gaussian data.

We characterize the number of features d needed for SVM=O0LS to
occur when p = 2. Let ¥ € RY%9 be an arbitrary covariance matrix.

» We provide non-asymptotic bounds for Subgaussian features,
X; = Zl/zz,-, Z; i Subg(1).

» We show a phase transition occurs for standard Gaussian features,
x; A (0, 4% q)-

» We demonstrate an empirical universality of this phase transition.

(anisotropic)

(isotropic)

» Conjecture about phase transition when p = 1.
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Main results

Define effective dimensions via eigenvalues \; > \p > --- > A\, of L:
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We show that this coincidence can be characterised in terms of these
effective dimensions rather than actual ambient dimension d.

Theorem 1. Assume d > n and p = 2.

(i) Upper Bound ([8]): Under anisotropic data model, there exist
constants ¢ > 0 such that

dy, > cnlogn = P[SVM = OLS| > 0.9,

(i) Lower Bound: Under anisotropic data model, there exist constants
c,c’ > 0 such that

d) < cnlogn, dy, > c'\/nd, = P[SVM = OLS]| <0.1.

(iii) Under isotropic data model with identity covariance matrix >~ = I;g,
there exists constant ¢, ¢ > 0 such that

d > cnlogn = P[SVM = OLS| > 0.9
d <cnlogn = P[SVM = OLS] < 0.1

(iv) Phase Transition: Under isotropic Gaussian model, there exists
constant ¢ > 0 such that

1 ifd>(2+—-—)nlogn
im P[SVM = OLS| = \/logn>

n— o . C
0 ifd< (2 \/@>n|ogn.

Our results rely on the following algebraic characterization of SVP:
Lemma ([8]): All samples are support vectors if and only if

rp<c”13<< yxi, XTI (X XT) "y, > <1

u;

(We provide a new geometric proof that can be straightforwardly
extended to infinite dimensional spaces.)

> For isotropic Gaussian case, u; are marginally (0, 5).

» If u; were independent, max; u; = @p(\/n log n/d), so threshold
should occur when d = ©(nlog n).

» Despite lack of independence, same result follows by considering a
subsample and showing that (X\; {i)_l R %ln_l.

» Result for anisotropic setting follows from subgaussian concentration
and Berry-Esseen type bounds.

Empirical results
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We empirically show that
phase transition occurs
at d = 2nlog n (shown
in red curve) rate for a
wide range of
distributions including
ones with heavier tails
than Subgaussians.
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We model the behavior
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/1 Conjecture: There exists a boundary f(n) = w(nlog n) under
isotropic data model such that,

1 d>cf
im P[SVM = OLS for p =1] = 4 g C, (1)
N0 0 d<cf(n)

/
where ¢ > ¢ are constants.
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