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Support Vector Machines ?= Ordinary Least Squares

Suppose we have a classification task with n independent observations
(xi , yi) ∈ Rd × {±1},

where the labels yi are fixed. (Assume dataset is linearly separable.)
Hard `p-Norm Margin Suppor Vector Machine (SVM): Linear
classifier x 7→ sign(x TwSVM) that maximizes `p-norm margin

wSVM = arg min ‖w‖p
s.t. yixᵀi w ≥ 1

Minimum `p-Norm Ordinary Least Squares (OLS): Linear
function x 7→ x TwOLS of minimum `p norm that interpolates data

wOLS = arg min ‖w‖p
s.t. yixᵀi w = 1

Question: For what values d = d(n) do we
have SVM = OLS with high probability?
Remark: Equiv. to all inequality constraints
being tight; all samples are support vectors,
a.k.a. “support vector proliferation (SVP)”.

Implications on SVM generalization

Implicit Bias of optimization procedure: Gradient descent
(coordinate descent) on logistic loss converges to the solution of `2-norm
(`1-norm) hard margin SVM [1, 2].
Generalization: Classical bounds tied good generalization properties of
SVM to paucity of support vectors (or large margins).

#Support Vectors ↓ ⇒ Model Complexity ↓

I Recent line of work, demonstrates high dimensional regimes for SVM
with high complexity (and vanishing margins) but good generalization
using this SVM = OLS coincidence [3].

I “Benign overfitting” in over-parameterized linear regression provides
generalization bounds for OLS [4, 5, 6, 7].

I SVP translates benign overfitting bounds to SVM for d = Ω(n log n)
under Gaussian data [3].

Previous work

I Further work found that SVP occurs when d = Ω(n log n) for
anisotropic Subgaussian data and does not occur when d = O(n) for
isotropic Gaussian data [8].

I Limitations:
(1) There is a n vs n log n gap for SVP threshold
(2) Unclear generality of lower bounds beyond isotropic Gaussian data.

Our contributions

We characterize the number of features d needed for SVM=OLS to
occur when p = 2. Let Σ ∈ Rd×d be an arbitrary covariance matrix.
I We provide non-asymptotic bounds for Subgaussian features,

xi = Σ1/2zi , zi
i.i.d∼ Subg(1). (anisotropic)

I We show a phase transition occurs for standard Gaussian features,
xi

i.i.d∼ N (0, Id×d). (isotropic)
I We demonstrate an empirical universality of this phase transition.
I Conjecture about phase transition when p = 1.
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Main results

Define effective dimensions via eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd of Σ:

d2 := ( tr(Σ)
‖Σ‖Fro

)2 = (‖λ‖1
‖λ‖2

)2, d∞ := tr(Σ)
‖Σ‖op

= ‖λ‖1
‖λ‖∞

.

We show that this coincidence can be characterised in terms of these
effective dimensions rather than actual ambient dimension d .
Theorem 1. Assume d > n and p = 2.
(i) Upper Bound ([8]): Under anisotropic data model, there exist

constants c > 0 such that
d∞ ≥ cn log n ⇒ P[SVM = OLS] ≥ 0.9,

(ii) Lower Bound: Under anisotropic data model, there exist constants
c, c ′ > 0 such that

d2 ≤ cn log n, d∞ ≥ c ′
√

nd2 ⇒ P[SVM = OLS] ≤ 0.1.
(iii) Under isotropic data model with identity covariance matrix Σ = Id×d ,

there exists constant c, c ′ > 0 such that
d ≥ cn log n ⇒ P[SVM = OLS] ≥ 0.9
d ≤ c ′n log n ⇒ P[SVM = OLS] ≤ 0.1

(iv) Phase Transition: Under isotropic Gaussian model, there exists
constant c > 0 such that

limn→∞P[SVM = OLS] =


1 if d ≥

(
2 + c√

log n

)
n log n

0 if d ≤
(
2− c√

log n

)
n log n.

Proof ideas

Our results rely on the following algebraic characterization of SVP:
Lemma ([8]): All samples are support vectors if and only if

max
i≤n

〈
yixi , Xᵀ

\i
(
X\iXᵀ

\i
)−1 y\i

〉
︸ ︷︷ ︸

ui

< 1.

(We provide a new geometric proof that can be straightforwardly
extended to infinite dimensional spaces.)
I For isotropic Gaussian case, ui are marginally N (0, n

d).
I If ui were independent, maxi ui = Θp(

√
n log n/d), so threshold

should occur when d = Θ(n log n).
I Despite lack of independence, same result follows by considering a

subsample and showing that (X\iXT
\i)−1 ≈ 1

d In−1.
I Result for anisotropic setting follows from subgaussian concentration

and Berry-Esseen type bounds.

Empirical results
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We empirically show that
phase transition occurs
at d = 2n log n (shown
in red curve) rate for a
wide range of
distributions including
ones with heavier tails
than Subgaussians.
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We model the behavior
of the phase transition
by τ = d/2n log n and
perform a parametric
test to validate the
universality.

`1 Conjecture: There exists a boundary f (n) = ω(n log n) under
isotropic data model such that,

limn→∞P[SVM = OLS for p = 1] =

1 d > cf (n)
0 d < c ′f (n)

where c ≥ c ′ are constants.
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