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Abstract

We consider the problem of distribution-free conformal prediction and the criterion of
group conditional validity. This criterion is motivated by many practical scenarios including
hidden stratification and group fairness. Existing methods achieve such guarantees under either
restrictive grouping structure or distributional assumptions, or they are overly-conservative
under heteroskedastic noise. We propose a simple reduction to the problem of achieving validity
guarantees for individual populations by leveraging algorithms for a problem called multi-group
learning. This allows us to port theoretical guarantees from multi-group learning to obtain
obtain sample complexity guarantees for conformal prediction. We also provide a new algorithm
for multi-group learning for groups with hierarchical structure. Using this algorithm in our
reduction leads to improved sample complexity guarantees with a simpler predictor structure.

1 Introduction

The focus of this paper is sample-efficient algorithms for distribution-free conformal prediction.
Consider a dataset D of random examples drawn i.i.d. from an unknown probability distribution over
the domain X × Y . The goal of conformal prediction is to use D to construct a valid set prediction
function C : X → 2Y ; by this, we mean that given the feature vector X of a new (independent)
test example (X,Y ) drawn from the same distribution, the predicted confidence region C(X) ⊆ Y
should typically contain the corresponding label Y . We adopt the notion of (training conditional)
validity introduced by Vovk [2012], Bian & Barber [2022]1: the set predictor C is valid at the level
1− α if, with high probability over the draw of D,

Pr[Y ∈ C(X) | D] ≥ 1− α− o(1)

as the number of data becomes large. The coverage rate displayed in the left-hand side above is an
average over possible test examples (X,Y ).

In many cases, however, this notion of validity may be insufficient from the perspective of a
particular test example (say, corresponding to a specific individual). This is because the average
incorporates all possible test examples, many of which may have little resemblance to the particular

E-mail: samdeng@cs.columbia.edu, na2844@columbia.edu, djhsu@cs.columbia.edu
1Contrast this with marginal validity, which averages over both D and the test example. We drop the descriptor

“training conditional” in the sequel for brevity, as we always give guarantees that hold with high probability over D.
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test example. The averaging therefore obscures the underlying structure of “coverage failures”, as
the confidence region might fail to contain the label for some examples more often than others.
Similar issues were raised in practice for classification problems under the guise of hidden strati-
fication Oakden-Rayner et al. [2020] and group fairness [Hardt et al., 2016, Agarwal et al., 2018,
Donini et al., 2018, Blum & Lykouris, 2020].

The stricter requirement of group conditional validity is a natural way to address the afore-
mentioned issues Vovk [2012], Foygel Barber et al. [2021]. Suppose G ⊂ 2X is a collection of
(possibly overlapping) groups of feature vectors. For instance the groups could be based on various
demographic characteristics, such as age, race, and gender. Or the groups could be feature-spatial
regions (e.g., in Rd) determined by a process such as dyadic partitioning. Group conditional validity
at level 1− α demands that, for each such group g ∈ G, the conditional coverage rate for group g,
defined by

Pr[Y ∈ C(X) | X ∈ g, D],

be at least 1 − α − o(1). Note that object conditional validity—the special case where G = 2X

is the maximally rich family of groups—is known to be impossible to non-trivially ensure in a
distribution-free manner [Vovk, 2012, Lei & Wasserman, 2014]. Therefore, the main focus of this
paper is group-conditional validity for groups G that are restricted in richness. For concreteness, we
simply assume that G is finite but possibly very large.

Prior methods for group-conditional validity were initially developed for non-overlapping
groups [Vovk, 2012] and then later for overlapping groups [Foygel Barber et al., 2021]. The
method of Vovk uses (non-)conformity scores with the “Split Conformal” approach of Papadopoulos
et al. [2002] on each group separately. Under the assumption of disjoint groups, one uses the
predictive set function for the (unique) group containing X to construct the confidence region
for X. To handle overlapping groups (in the context of regression), the method of Foygel Barber
et al. considers the predictive intervals for all groups containing X, and then (essentially) uses the
widest such interval. While this ensures validity, it may be overly conservative in problems with
heteroskedastic noise [Jung et al., 2022]. Other methods address heteroskedasticity by aiming for
stronger guarantees such as “multicalibration” and “multivalid coverage” [Jung et al., 2022], but
these guarantees are achieved only under additional smoothness conditions on the distribution of
conformity scores.

1.1 Contributions

Our goal is to develop algorithms that achieve distribution-free group-conditional validity. To this
end, we propose and analyze a simple reduction to the simpler problem of achieving distribution-
free validity on individual populations. Our reduction is based on multi-group (agnostic PAC)
learning [Rothblum & Yona, 2021], a generalization of traditional agnostic PAC learning. In
multi-group learning with respect to a family of groups G and a reference class of predictors H,
the goal is to produce a single predictor that, for every group g ∈ G, has small excess conditional
risk on a new random example (X,Y ) given that X ∈ g (see Section 3.1 for the formal definition).
Our reduction, given in Section 3, can be instantiated with any learning algorithm designed for
multi-group learning, and our analysis translates multi-group learning guarantees to guarantees on
group-conditional validity. Instantiating this reduction with existing multi-group learning algorithms
of Tosh & Hsu [2022] and standard conformal prediction methods [see, e.g., Vovk, 2012] yields new
methods for building group-conditionally valid set predictors that apply more generally or are more
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noise-adaptive than those from previous works.
A second contribution of this paper is a new multi-group learning algorithm for the important

special case of groups that are hierarchically structured. The algorithm, presented in Section 4,
produces simpler predictors (decision trees) with better statistical guarantees compared to that of
some previous algorithms in the context of multi-group learning. We also explain how this procedure
can have qualitative advantages over a black-box application of (the analysis of) our reduction.

1.2 Related work

Our work connects to the literature on conformal prediction and multi-group learning.

Conformal prediction. The distribution-free and model-agnostic guarantees offered by conformal
prediction methods enable wide applicability in areas as varied as clinical research Lu et al. [2022],
fairness in sentencing and recommendation Romano et al. [2020], Kuchibhotla & Berk [2021],
and robotics Lindemann et al. [2022], Dixit et al. [2022]. The goal of general group-conditional
validity (beyond the case of non-overlapping groups [Vovk, 2012]) was introduced and studied
by Foygel Barber et al. [2021] under the name of “restricted conditional coverage”. They show
the sufficiency and necessity of bounded VC dimension on G. As discussed above, the method
proposed by Foygel Barber et al. may be overly conservative in situations with heteroskedastic
noise, leading to confidence regions that are too large and uninformative. Jung et al. [2022] presents
a method that is more adaptive to the group membership of new test examples, but it differs from
our proposed methods in important ways. The method of Jung et al. aims for a guarantee called
“multivalid coverage”, which is qualitatively stronger than group-conditional validity. Consequently,
their method relies on a Lipschitz condition on the distribution of conformity scores, which is not
needed by our methods for achieving group-conditional validity. Their method’s rate of convergence
to the prescribed validity level is also asymptotically slower than that achievable using our reduction
(n−1/4 vs. n−1/2).

Multi-group learning. The framework of multi-group agnostic PAC learning was formalized
by Rothblum & Yona [2021], and their proposed methods were built atop the outcome indistin-
guishability framework of Dwork et al. [2021]. Multi-group agnostic PAC learning has an online
counterpart which was studied by Blum & Lykouris [2020] in the context of group fairness. One
of the algorithms of Tosh & Hsu [2022] gives the best convergence rates for multi-group learning,
and hence via our reduction lead to our strongest guarantees for group-conditional validity. The
algorithm we propose in Section 4 can be viewed as adaptation of the “Prepend” algorithm of Tosh
& Hsu (and also of a related algorithm of Globus-Harris et al. [2022]). Our analysis of the algorithm
in the special case of hierarchically structured groups is very different from that of “Prepend” and
leads to an improved rate of convergence.

2 Preliminaries

2.1 Data and groups

Let X be the input space (e.g., of feature vectors describing instances), and let Y be the output
space (e.g., of labels to predict). Let G ⊆ 2X be a (finite) family of groups g ⊆ X , each of which
is a subset of the input space. We overload notation and also use g(x) = 1{x ∈ g} to denote the
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indicator function for g. For a dataset D ⊂ X ×Y and group g, let Dg = {(x, y) ∈ D : x ∈ g} denote
the set of examples in D whose feature vectors are in g. Similarly, for a probability distribution P
over X × Y, we let Pg denote the conditional distribution of (X,Y ) ∼ P given X ∈ g.

2.2 Notions of validity

Let C : X → 2Y be a (possibly randomized) set predictor, constructed using a (random) dataset D.
For α, δ ∈ (0, 1) and any probability distribution P over X × Y, we say C is (α, δ)-valid for P if,
with probability at least 1− δ over the random draw of D,

Pr[Y ∈ C(X) | D] ≥ 1− α, (1)

where (X,Y ) ∼ P be a test example drawn from P (independent of D). For any sequence (αg : g ∈
G) ∈ (0, 1)G and δ ∈ (0, 1), we say C is ((αg : g ∈ G), δ)-group conditionally valid for (P,G) if, with
probability at least 1− δ over the random draw of D,

Pr[Y ∈ C(X) | X ∈ g, D] ≥ 1− αg for all g ∈ G. (2)

We allow the level of validity 1− αg to depend on the group g ∈ G, e.g., through the probability
mass of the group P(g), as the more examples one expects to have in Dg, the greater the level of
confidence one can expect to achieve.

2.3 Background on conformal prediction

Conformal prediction refers to techniques for constructing valid set predictors in a distribution-free
manner (i.e., without assumptions on the unknown distribution P), assuming only the availability
of i.i.d. data from P [Vovk et al., 2005, Vovk, 2012]. The i.i.d. assumption can be relaxed to
exchangeability, but for sake of brevity of the proofs, we stick to the i.i.d. setting.

One of the simplest approaches to conformal prediction that ensures validity (as defined in
Section 2.2) is Inductive Conformal Prediction (ICP; also called Split Conformal) [Vovk, 2012],
although several other holdout methods also enjoy this property [Bian & Barber, 2022]. We describe
ICP below, following the presentation of Lei & Wasserman [2014], and also show a baseline approach
to group-conditional validity with ICP.

Description of ICP. The ICP method uses a partition of observed data D into two datasets, D(tr)

and D(cal). The training data D(tr) is used to train a predictor µ : X → Z; the calibration data is
used to build the set predictor CICP

α : X → 2Y on top of µ for a given level 1−α. (Typically Z = Y ,
but this is not strictly necessary.) ICP relies on a non-conformity score function s : Y × Z → R
that compares predictor’s outputs with true labels. A common example (in regression problems,
where Z = Y = R) is the residuals error of the prediction model s(y, z) = |y − z|.

The confidence regions produced by CICP
α are obtained by inverting tests of hypotheses of the

form “Y = y”, where y ∈ Y is a possible label of a given feature vector x ∈ X . Forming p-values for
such hypothesis tests is obtained using a non-parametric rank test on non-conformity scores; this
is what enables the construction of distribution-free valid confidence regions. In detail, let P̂y be
the empirical measure over D(cal) ∪ {(x, y)}, which combines the calibration dataset D(cal) with the
provisioned test example (x, y). By forming scores S(Ỹ , µ(X̃)) where (X̃, Ỹ ) ∼ P̂y and measuring
the rank of the score corresponding to S(y, µ(x)), we can construct a valid p-value

P̂y[S(Ỹ , µ(X̃)) ≤ S(y, µ(x))].
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To achieve validity at level 1− α, the ICP set predictor outputs the set of all y ∈ Y for which the
test is not rejected:

CICP
α (x;D(cal), µ) :=

{
y ∈ Y

∣∣∣ P̂y[S(Ỹ , µ(X̃)) ≤ S(y, µ(x))] > α
}
.

In the sequel, we drop the explicit dependence on D(cal) and µ when it is clear from context.

Proposition 2.1 (Proposition 2a of Vovk, 2012). Given any α, δ ∈ (0, 1) and a dataset D =
D(tr) ∪ D(cal), where D(cal) is drawn i.i.d. from P and independent of D(tr), the set predictor CICP

α

constructed by the ICP procedure described above is (α′, δ)-valid for P with

α′ = α+

√
log(1/δ)

2|D(cal)|
.

Of course, ICP can be applied to achieve validity for Pg for any individual group g ∈ G, simply

by using D(cal)
g instead of D(cal); this easily leads to a variant of Proposition 2.1 with P replaced by

Pg and |D(cal)| replaced by |D(cal)
g |.2

Baseline approach to group-conditional validity. Recall that group-conditional validity
requires a single set predictor C that ensures a prescribed level of validity for all groups simultaneously.
In the case where the groups in G are disjoint (and, for simplicity, assumed to satisfy

⋃
g∈G = X ),

then this is easy to achieve by constructing a separate set predictor Cg for each g ∈ G (say, using
ICP), and then defining C(x) = Cg(x) where g is the unique group g ∈ G that contains x [Vovk,
2012]. However, if groups in G may overlap, then this approach does not work, as it is not clear
what confidence region to return for any x that belongs to more than one group.

A baseline solution to this problem is to replace G with a family G∗ of non-overlapping groups
that refines G, and then to use the method described above with G∗. However, the level of validity
1−αg achievable for a group g ∈ G will suffer with this approach if g is shattered into many smaller
groups g = g1 ∪ · · · ∪ gk in this new family, where the gi ∈ G∗ may only have a small fraction of the
P-mass of g. We show in the next section that such a degradation can be avoided by working only
with individual set predictors Cg for each g ∈ G.

3 Reduction based on multi-group learning

In this section, we describe and analyze a reduction from the problem of learning group-conditionally
valid set predictors to the problem of valid set predictors for single populations. The reduction is
based on algorithms for a problem called multi-group learning. We instantiate this reduction with
a particular multi-group algorithm and the ICP method from Section 2.3 to give an end-to-end
procedure for achieving group-conditional validity.

2There is one technical difference, which is that |D(cal)
g | is technically a (binomial) random variable, so the level of

validity 1−α′ would also technically be random. However, the concentration properties of |D(cal)
g | are well-understood,

and it is possible to write an achievable level of validity purely in terms of |D(cal)| and P(g) (and (α, δ)). We forgo
this in this paper for sake of simplicity.
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3.1 Background on multi-group learning

Multi-group learning, formalized by Rothblum & Yona [2021], is a generalization of the traditional
agnostic PAC learning setup. In agnostic PAC learning [Kearns et al., 1992, Haussler, 1992], the
goal is to produce a predictor that, with high probability, achieves small excess risk (relative to
a benchmark class of predictors). In multi-group learning, the goal is to achieve small excess
conditional risk, simultaneously over all groups g ∈ G.

For P be a probability distribution over X × Y. Let H be a benchmark class of predictors
h : X → A, which serves as a family of benchmark predictors; also let ℓ : A × Y → [0, 1] be a
bounded loss function for measuring the quality of predictions. The conditional ℓ-risk of a (possibly
randomized) predictor f : X → Y for group g ⊆ X is

L(f | g) := E [ℓ(f(X), Y ) |X ∈ g] ,

where the conditional expectation is over (X,Y ) ∼ Pg (and any possible internal randomization of
f). The excess conditional ℓ-risk of f for group g (relative to H) is L(f | g)− infh∈H L(h | g). A
multi-group learning (MGL) algorithm for (G,H) is given a dataset D ⊆ X ×Y of random examples
drawn i.i.d. from P, and returns a predictor f : X → A (which may be randomized, and also need
not be in H). The goal of such an algorithm is to ensure f has small excess conditional ℓ-risk for all
groups g ∈ G simultaneously.

Definition 3.1 (MGL property). A multi-group learning algorithm for (G,H) satisfies the MGL
property with excess conditional ℓ-risk bounds ϵg(·, ·) for g ∈ G if it returns a (possibly randomized)
predictor f : X → A such that, with probability at least 1− δ over the random draw of D,

L(f | g)− inf
h∈H

L(h | g) ≤ ϵg(D, δ) for all g ∈ G.

Above, ϵg(D, δ) bounds the excess conditional ℓ-risk of f for group g, and it is typically decreasing
in |Dg| and δ. (It may also depend on H and G.)

Tosh & Hsu [2022] presents two MGL algorithms satisfying the MGL property with different
excess conditional ℓ-risk bounds. Here we quote the guarantee for one of these algorithms, which is
based on an online-to-batch conversion of a “sleeping experts” online learning algorithm of Blum &
Mansour [2007].

Proposition 3.2 (Theorem 10 of Tosh & Hsu, 2022). For any bounded loss function ℓ, there is an
MGL algorithm for (G,H) that satisfies the MGL property with excess conditional ℓ-risk bounds

ϵg(D, δ) = O

(√
log(|H||G|/δ)

|Dg|

)
for all g ∈ G.

3.2 The reduction

We now give our reduction based on multi-group learning.
Let H = {Cg : g ∈ G} be a benchmark class of set predictors, one per group in G. (We henceforth

use A = 2Y .) Our reduction is simply to run an MGL algorithm for (G,H), where the loss function
is the 0/1 “miscoverage” loss function ℓ0/1 : 2

Y × Y → [0, 1] defined by

ℓ0/1(c, y) := 1{y /∈ c}. (3)
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The dataset provided to the MGL algorithm is a separate dataset D(mg), drawn i.i.d. from P and
independent of data used to construct the set predictors in H. The MGL algorithm returns a set
predictor C : X → 2Y . We show below that C satisfies group-conditional validity for P as long as
the set predictors in H are valid for their respective conditional distributions Pg’s.

Theorem 3.3. Suppose the set predictors in H = {Cg : X → 2Y : g ∈ G} are constructed using a
dataset D and each Cg is (αg, δ/(2|G|))-valid for Pg. Let C : X → 2Y be the set predictor returned
by a MGL algorithm A for (G,H) on a dataset D(mg) of i.i.d. random examples from P, independent
of D. If A satisfies the MGL property with excess conditional ℓ0/1-risk bounds ϵg(·, ·) for g ∈ G, then
C is ((α′

g : g ∈ G), δ)-valid for (P,G) with

α′
g = αg + ϵg(D(mg), δ/2) for all g ∈ G.

Theorem 3.3 is a direct consequence of the definitions given above, the particular choice of
the loss function, and union bounds to ensure that the “failure probability” in the definition of
group-conditional validity is at most δ.

3.3 End-to-end algorithm for group-conditional validity

We demonstrate the utility of our reduction by using it to give an end-to-end procedure that
produces group-conditionally valid set predictors.

1. Let D be a dataset of random examples drawn i.i.d. from P, partitioned into three sets, D(tr),
D(cal), and D(mg).

2. For each group g ∈ G, use D(tr) to train a predictor µg : X → Z, and then use D(cal) and µg

to construct a set predictor Cg : X → 2Y using ICP with nominal level 1− α:

Cg = CICP
α ( · ;D(cal)

g , µg), (4)

and let Ĥ := {Cg : g ∈ G}.3

3. Run an MGL algorithm A from Proposition 3.2 for (G, Ĥ) and the loss function ℓ0/1 using the

dataset D(mg) to obtain the final set predictor C : X → 2Y .

We have the following corollary of Theorem 3.3 (by way of Proposition 3.2).

Corollary 3.4. Let C : X → 2Y be the set predictor constructed by the procedure described above.
With probability at least 1− δ over the random draw of D, C is ((α′

g : g ∈ G), δ)-valid for (P,G) with

α′
g = α+ c

√√√√( log(|G|/δ)

|D(cal)
g |

+
log(|G|/δ)

|D(mg)
g |

)
,

where c > 0 is a universal constant.

3Note that Ĥ is a random benchmark class that is σ(D(tr),D(cal))-measurable. The dependence of Ĥ on the training
data is only through the predictor functions {µg}g∈G .
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We note that, for each x ∈ X , the predicted confidence region C(x) is randomly chosen from
among {Cg(x) : g ∈ G, x ∈ g}, with each region having a positive chance of being picked. Below,
we give an example in the context of regression (where Y = R) to illustrate qualitatively how our
procedure can be more adaptive that of Foygel Barber et al. [2021]. Recall that their method
(essentially) picks the “widest” confidence region corresponding to groups that contains the test
feature vector, and this always leads to group-conditionally valid confidence intervals. This turns out
to be asymptotically optimal in some scenarios with homogeneous noise, but it may be suboptimal
when heteroskedastic noise is present.

Example. We construct a data distribution P in which the label Y has different variance under
the different group-conditional distributions Pg. In particular, for any x ∈ X , we let the conditional
distribution of Y given X = x in P be zero-mean normal

Y | X = x ∼ N (0, σ2(x))

with variance depending on x as follows:

σ2(x) =


v1 if x ∈ g1 \ g2
v2 if x ∈ g2 \ g1
v1,2 if x ∈ g1 ∩ g2

for some positive values v1, v2, v1,2. (Here, G = {g1, g2}.) We let the marginal distribution of X be
one in which all possible combinations of group memberships are equally likely, so (g1(X), g2(X)) is
a uniformly random in {0, 1}2.

Suppose that set predictors Cg1 and Cg2 are formed using ICP with the “absolute residual” non-
conformity score function S(y, z) = |y − z| and also the same (constant) global predictor µg(x) ≡ 0
for both groups g ∈ G. For the distribution above, these set predictors will be qualitatively different,
as Cgi outputs a confidence interval of (square) length roughly proportional to

var(Y | X ∈ gi) =
1

2
vi +

1

2
v1,2.

Suppose v1,2 ≪ v1 ≪ v2, so the confidence interval for group g1 is very short compared to that of
group g2. Picking the widest confidence interval will, half of the time, lead to over-coverage for
X ∈ g1, as the long interval for group g2 will be for all X ∈ g1 ∩ g2. However, the set predictor
produced using the procedure of Corollary 3.4 will use the shorter interval for g1 at least a fraction
of the time, even for X ∈ g1 ∩ g2. This will leads to confidence intervals of smaller average length.

4 Multi-group learning with hierarchical group structure

One potential drawback of the algorithm from Corollary 3.4 is that the resulting set predictor is
fairly complex and randomized. To address this drawback, we could instead apply our reduction
using a different multi-group learning algorithm, such as the “Prepend” algorithm of Tosh & Hsu
[2022], which outputs a deterministic decision list predictor. However, Prepend has the MGL
property only with

ϵg(D, δ) = O

(
3

√
log(|H||G|/δ)

γ|Dg|

)
,
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where γ := ming∈G P(g). This cube-root rate should be compared to the square-root rate in
Proposition 3.2; also note the lack of an explicit dependence on γ in Proposition 3.2. Using Prepend
implies a slower rate-of-convergence to the nominally prescribed validity level compared to that
from Corollary 3.4.

In this section, we show that under the natural assumption that G is hierarchically structured,
there is a different procedure Algorithm 1—which we call MGL-Tree-Conformal—that recovers the
same rate-of-convergence as that from Corollary 3.4, but outputs a much simpler (and deterministic)
decision tree predictor. Algorithm 1 is based on a new multi-group learning algorithm, MGL-Tree
(Algorithm 2), which we describe in full generality in Appendix A.

4.1 Hierarchical group structure

A family of groups G ⊆ 2X is hierarchically structured (also called laminar) if, for every pair of
distinct groups g, g′ ∈ G, exactly one of the following holds:

• g ∩ g′ = ∅ (g and g′ are disjoint),

• g ⊂ g′ (g is contained in g′),

• g′ ⊂ g (g′ is contained in g).

Put another way, the groups in G can be arranged as nodes in a rooted tree TG such that if g is a
child of g′ in TG , then g ⊂ g′; and if g and g′ are siblings in TG , then g ∩ g′ = ∅. For simplicity, we
assume that X itself is in G. In this case, X is the root of TG , and the leaves of any pruning of TG
form a partitioning of some subset of X .

Hierarchically structured groups naturally arise in many situations, such as when a base set X is
recursively partitioned into categories and further subcategories. In a machine learning context, they
arise when groups are obtained using agglomerative clustering of a dataset or a dyadic partitioning
of a feature space.

The hierarchical structure (via TG) suggests a very natural structure for a set predictor C : X → 2Y

as follows. Each node in TG is annotated with a predictor Ĉg : X → 2Y , and to compute the output
of the C on input x, simply find the “deepest” g in TG that contains x by following a path starting
at the root X and moving from parent to child whenever the child contains x; the prediction C(x)
is then taken to be Ĉg(x). This is essentially a decision tree, with the one small wrinkle that an
input x need not be routed all the way to a leaf of TG ; instead, it may stop at some intermediate
tree node. Nevertheless, the structure of C is as natural as that of a (more standard) decision tree.

4.2 Group conditional validity from MGL-Tree-Conformal

Algorithm 1 ultimately outputs a decision tree set predictor, C : X → 2Y , of the form described
above. We now sketch how that decision tree is constructed, using the notation from Section 3
and the tree TG above. Recall that each node of C is associated with a group g ∈ G. As in
Section 3, suppose we have a collection {Cg : g ∈ G} of set predictors Cg each based on dataset D
of i.i.d. examples from P, and Cg is (αg, δ/(2|G|))-valid for Pg.

We just need to decide how to annotate each node g in C with a set predictor Ĉg : X → 2Y . For
now, we just describe how to do this with a separate, independent dataset D(mg) of i.i.d. examples
from P. Initially, we set ĈX = CX , the set predictor that is valid for P = PX . Then, we consider
nodes g in TG in breadth-first order starting at the root X to determine the remaining Ĉg. At node
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g, we compute the difference between the empirical group-conditional miscoverage rates of Ĉpa(g)

and Cg, where pa(g) is the parent of g in TG . To write this, first define

∆g(x, y) := 1{y ̸∈ Ĉpa(g)(x)} − 1{y ̸∈ Cg(x)}

for an example (x, y) ∈ X × Y. Then, the difference in empirical group-conditional miscoverage
rates on D(mg) can be written as

Diffg :=
1

|D(mg)
g |

∑
(X,Y )∈D(mg)

g

∆g(X,Y ). (5)

We set Ĉg to be either Cg or Ĉpa(g) depending on the value of Diffg. Let

εg(D(mg), δ) := 18

√
4 log(|G|) + log(8/δ)

|D(mg)
g |

. (6)

If the empirical group-conditional miscoverage rate of Cg is better than that of Ĉpa(g) by a
large-enough margin—specifically, if Diffg ≥ εg(D(mg), δ)—then we set Ĉg := Cg. If not, we set
Ĉg := Ĉpa(g). This is described in full in Algorithm 1.

Algorithm 1 MGL-Tree-Conformal

Input: Family of hierarchically structured groups G ⊆ 2X ; collection of set predictors {Cg : g ∈ G}
based on D; dataset D(mg) of i.i.d. random examples from P, independent of D; probability
parameter δ ∈ (0, 1).

Output: Decision tree set predictor C : X → 2Y .
1: Set ĈX := CX .
2: for each g ∈ G \ {X} in breadth-first order do
3: Compute Diffg and εg(D(mg), δ) (from (5) and (6))
4: if Diffg > εg(D(mg), δ) then
5: Set Ĉg := Cg.
6: else
7: Set Ĉg := Ĉpa(g).
8: end if
9: end for

10: return Set predictor C as described in Section 4.1.

Theorem 4.1. Suppose the collection of set predictors {Cg : g ∈ G} are constructed using a dataset
D of i.i.d. random examples from P so that for each g ∈ G, Cg is (αg, δ/(2|G|))-valid for Pg. Let
C be the decision tree set predictor returned by Algorithm 1 using a dataset D(mg) of i.i.d. random
examples from P independent of D. Then C is ((α′

g : g ∈ G), δ)-group conditionally valid for (P,G)
with

α′
g = αg + c

√
log(|G|/δ)

|D(mg)
g |

where c > 0 is a universal constant.

10



If ICP is used construct the set predictors {Cg : g ∈ G} with Algorithm 1, then we obtain the
following end-to-end group-conditional validity guarantee as a corollary of Theorem 4.1.

Corollary 4.2. Suppose that the set predictors {Cg : g ∈ G} are generated by ICP with nominal
level 1−α using a dataset D = D(tr)∪D(cal) of i.i.d. random examples from P. Let C be the decision
tree set predictor returned by Algorithm 1 using a dataset D(mg) of i.i.d. random examples from P
independent of D. Then C is ((α′

g : g ∈ G), δ)-group conditionally valid for (P,G), with

α′
g = α+ c

√
log(|G|/δ)

|D(cal)
g |

+
log(|G|/δ)

|D(mg)
g |

,

where c > 0 is a universal constant.

Reducing the number of data splits. The overall procedure described above in Corollary 4.2
still uses three datasets: D(tr) for training the group-specific predictors µg, D(cal) for constructing
the valid set predictors Cg via ICP, and D(mg) for forming the final set predictor C. This is precisely
the situation that we have by using the reduction from Section 3 with Algorithm 2 (in Appendix A),
our general MGL algorithm for hierarchically structured groups.

However, it is possible, and potentially advantageous, to re-use D(tr) in place of D(mg). Specifically,
we may use D(tr) in Algorithm 1 in place of D(mg) to estimate the miscoverage rates of Cg on
the various group-conditional distributions Pg′ . If the family of predictors µg’s underlying the
set predictors Cg’s is taken from a class of predictors that is not too rich, then these empirical
miscoverage rates will converge uniformly to the actual miscoverage rates as D(tr) becomes large.

In this case, we obtain a similar result as in Corollary 4.2, with log(|G|/δ)/|D(mg)
g | replaced by

log(|M|/δ)/|D(tr)
g |, whereM is the class of predictors from which the µg’s are taken. The cardinality

of M can be replaced by other capacity measures (e.g., covering numbers) that enable uniform
convergence. This is a pessimistic estimate, since the criterion used for selecting the µg’s is not
necessarily strongly correlated with the miscoverage rates of the corresponding Cg’s.

By avoiding the need for D(mg), we avoid the need to split available data into three parts, and
instead only require a split into two parts (D(tr) and D(cal), same as the standard ICP method).
This may be practically important because it leaves more data available for training the predictors
or for performing the conformalization in ICP.

5 Conclusion and future work

Our work provides new mechanisms for obtaining distribution-free group conditionally valid guar-
antees by reducing to the simpler problem of validity on individual populations of interest. Our
reduction is based on new algorithms for the problem of multi-group learning, and this reduction-
based approach is able to take advantage of preexisting standard conformal prediction methods.
Moreover, we provide a new, simple algorithm for the case of hierarchically structured groups, with
improved statistical guarantees compared to previous existing algorithms.

Below, we discuss a few directions for future work.

• Algorithm 1 takes advantage of the structure of G in a natural way, but oftentimes additional
or different prior information about groups may be available. Prior knowledge about the
similarity between groups (e.g., in terms of how similar their optimal predictors are, or how

11



similar their label variances are) may be desirable to incorporate in the construction of the
overall set predictor. For instance, if a pair of groups g and g′ are found to be similar in this
way, perhaps it would be beneficial to augment G with g ∪ g′.

• Group-conditional guarantees have been connected to robustness in the context of hidden
stratification [Oakden-Rayner et al., 2020]: a group-conditional guarantee with a family G that
is closed under complements implies robustness to attacks on individual groups of training data.
Although there is a vast body of literature on distributionally-robust optimization [e.g., Duchi
et al., 2021, Hu et al., 2018, Sagawa et al., 2020], it has yet to be connected to multi-group
learning or group-conditional validity in conformal prediction.

• Our work also gives a “proof of concept” for the generality of the PAC-style statistical
guarantees achievable in the multi-group learning framework. Conformal prediction is a
particularly nice application of this (as group conditional validity is a desirable property for
conformal predictors), but the techniques in our reductions may find other applications where
group structure is important to consider.

References

Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., and Wallach, H. A reductions approach to
fair classification. In International Conference on Machine Learning, pp. 60–69, 2018.

Bian, M. and Barber, R. F. Training-conditional coverage for distribution-free predictive inference.
arXiv preprint arXiv:2205.03647, 2022.

Blum, A. and Lykouris, T. Advancing subgroup fairness via sleeping experts. In Innovations in
Theoretical Computer Science Conference (ITCS), 2020.

Blum, A. and Mansour, Y. From external to internal regret. Journal of Machine Learning Research,
8(6), 2007.

Dixit, A., Lindemann, L., Wei, S., Cleaveland, M., Pappas, G. J., and Burdick, J. W. Adaptive
conformal prediction for motion planning among dynamic agents. 2022. doi: 10.48550/ARXIV.
2212.00278. URL https://arxiv.org/abs/2212.00278.

Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J., and Pontil, M. Empirical risk minimization
under fairness constraints. In Advances in Neural Information Processing Systems, pp. 2796–2806,
2018.

Duchi, J. C., Glynn, P. W., and Namkoong, H. Statistics of robust optimization: A generalized
empirical likelihood approach. Mathematics of Operations Research, 2021.

Dwork, C., Kim, M. P., Reingold, O., Rothblum, G. N., and Yona, G. Outcome indistinguishability.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Co mputing, pp.
1095–1108, 2021.

Foygel Barber, R., Candes, E. J., Ramdas, A., and Tibshirani, R. J. The limits of distribution-free
conditional predictive inference. Information and Inference: A Journal of the IMA, 10(2):455–482,
2021.

12

https://arxiv.org/abs/2212.00278


Globus-Harris, I., Kearns, M., and Roth, A. Beyond the frontier: Fairness without privacy loss.
arXiv preprint arXiv:2201.10408, 2022.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity in supervised learning. Advances in
neural information processing systems, 29:3315–3323, 2016.

Haussler, D. Decision theoretic generalizations of the pac model for neural net and other learning
applications. Information and computation, 100(1):78–150, 1992.

Hu, W., Niu, G., Sato, I., and Sugiyama, M. Does distributionally robust supervised learning give
robust classifier s? In International Conference on Machine Learning, pp. 2029–2037. PMLR,
2018.

Jung, C., Noarov, G., Ramalingam, R., and Roth, A. Batch multivalid conformal prediction. 2022.
URL https://arxiv.org/abs/2209.15145.

Kearns, M. J., Schapire, R. E., and Sellie, L. M. Toward efficient agnostic learning. In Proceedings
of the fifth annual workshop on Computational learning theory, pp. 341–352, 1992.

Kuchibhotla, A. K. and Berk, R. A. Nested conformal prediction sets for classification with
applications to probation data. 2021. URL https://arxiv.org/abs/2104.09358.

Lei, J. and Wasserman, L. Distribution-free prediction bands for non-parametric regression. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):71–96, 2014.

Lindemann, L., Cleaveland, M., Shim, G., and Pappas, G. J. Safe planning in dynamic environments
using conformal prediction. 2022. doi: 10.48550/ARXIV.2210.10254. URL https://arxiv.org/

abs/2210.10254.
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A Multi-group Learning with Hierarchical Structure

Algorithm 1 in Section 4.2 is a special case of Algorithm 2 stated below, and its correctness
and validity guarantees (Theorem 4.1 and Corollary 4.2) follow directly from the correctness and
guarantees of Algorithm 2. In this section, we include Algorithm 2 in full generality in the context of
multi-group learning. We note that this algorithm may be of independent interest to the multi-group
learning literature for its “near-optimal” rates and simple resulting predictor.

In Section A.1, we restate the problem setting of multi-group learning, introduced earlier in
Section 3.1, and we briefly discuss Prepend Tosh & Hsu [2022], the multi-group learning algorithm
that MGL-Tree (Algorithm 2) extends. After stating some lemmas necessary for our following proofs
in Section A.2, we state MGL-Tree (Algorithm 2) in Section A.3 and prove its correctness and
multi-group learning guarantees in Section A.4.

A.1 Multi-group Learning and Prepend

We will eventually present and analyze Algorithm 2 (MGL-Tree) in the standard statistical learning
setting with the aim of achieving the multi-group (agnostic) learning guarantees introduced by
Rothblum & Yona [2021]. To do so, we first re-introduce some notation for multi-group learning,
reminiscent of the brief discussion in Section 3.1.

Let X be an input space, Y a label space, and A a prediction space. Let P ∈ P(X × Y) be a
joint distribution. Let ℓ : A× Y → [0, 1] be a loss function. Let D = {(Xi, Yi)}ni=1 be a dataset of
n i.i.d. examples drawn from P. G is a collection of possibly overlapping groups, which are just
subsets of the input space X . Let the groups g ∈ G be defined as in Section 2.1. For now, we defer
the definition of a hierarchically structured collection of groups G to Section A.2.

For any predictor, f : X → A, the group conditional risk of f on group g is:

L(f | g) := E [ℓ(f(X), Y ) |X ∈ g] ,

where the conditional expectation is over (X,Y ) ∼ Pg and any internal randomization of f . Similarly,
define the group conditional empirical risk of f on group g as:

LD(f | g) :=
∑

i∈[n] g(Xi)ℓ(f(Xi), Yi)∑
i∈[n] g(Xi)

.

We will refer to a “benchmark” hypothesis class as some set of predictor functions H ⊆ AX . Here,
“benchmark” is meant to indicate that the resulting predictor from a multi-group learning algorithm
need not be contained in H; in fact, this is necessary for multi-group learning in general.

The goal in multi-group learning is to find an algorithm such that, given a benchmark hypoth-
esis class H and dataset D, outputs a predictor f such that excess group conditional risks are
simultaneously bounded for all g ∈ G :

L(f | g) ≤ inf
h∈H

L(h | g) + ϵ(D, g, δ), (7)

with probability 1− δ. ϵ(D, g, δ) is the excess error of f to the best hypothesis in H for group g.
The Prepend algorithm of Tosh & Hsu [2022] runs with finite H and D = {(Xi, Yi)}ni=1 i.i.d.

training examples to produce a multi-group learning guarantee guarantee of

L(f | g) ≤ min
h∈H

L(h | g) +O

(
3

√
log |H||G|

γnng

)
for all g ∈ G,
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where γn := ming∈G ng/n and ng := |{i ∈ [n] : Xi ∈ g}|. If we knew the group g ∈ G beforehand,
then Empirical Risk Minimization (ERM) applied to the ng examples in group g would yield
the excess error rate O(

√
log |H|/ng) Shalev-Shwartz & Ben-David [2014], which suggests that

Prepend is suboptimal, in both its exponent and its denominator. However, by assuming that G
is hierarchically structured, Algorithm 2 achieves a rate competitive to this by incurring an extra
log |G| factor: O(

√
log |H||G|/ng). In addition, Algorithm 2 retains the simplicity of Prepend – its

output is a simple decision tree made up of hypotheses in H. This gives it a qualitative advantage
over the other complex, randomized multi-group learning predictor presented in Tosh & Hsu [2022]
while achieving the same “near-optimal” excess error O(

√
log |H||G|/ng).

A.2 Lemmas for Multi-group Learning with Hierarchically Structured Groups

In order to achieve the near-optimal rate and simpler predictor output by Algorithm 2, we will
impose the natural restriction that G is hierarchically structured. These definitions were introduced
in Section 4.1, and we use the same terminology and notation here. We introduce several key
lemmas that the proofs in Section A.4 depends on.

First, we present two lemmas that allow us to decompose the group conditional risk and group
conditional empirical risk when we condition on a union of disjoint groups. We will apply the
following two lemmas to the leaf nodes of the tree given by a hierarchically structured G.

Lemma A.1 (Disjoint Decomposition of Group Conditional Empirical Risk). Let g1, . . . gN be N
disjoint groups, and let D = {(Xi, Yi)}ni=1 be a dataset of n i.i.d. examples. Let n∪g be the number

of examples in
⋃N

k=1 gk, and let ngk be the number of examples in gk. Then, the group conditional

empirical risk for
⋃N

k=1 gk decomposes:

LD(f |
N⋃
k=1

gk) =
N∑
k=1

ngk

n∪g
LD(f | gk). (8)

Proof. By definition of group conditional empirical risk,

LD(f |
N⋃
k=1

gk) =
1

n

n∑
i=1

1

{
X ∈

N⋃
k=1

gk

}
ℓ(f(Xi), Yi).

We note that g1, . . . , gN are disjoint, so:

1

n

n∑
i=1

1

{
X ∈

N⋃
k=1

gk

}
ℓ(f(Xi), Yi) =

1

n∪g

n∑
i=1

(
N∑
k=1

gk(X)ℓ(f(Xi), Yi)

)

=
1

n∪g

N∑
k=1

(
n∑

i=1

gk(X)ℓ(f(Xi), Yi)

)

=
1

n∪g

N∑
k=1

ngkLD(f | gk) =
N∑
k=1

ngk

n∪g
LD(f | gk).

In the first equality, the gk(X) are just indicators for disjoint groups, so that immediately follows

from boolean algebra on 1

{
X ∈

⋃N
k=1 gk

}
. The second equality just switches order of summation,

and the third is the definition of group conditional empirical risk again.
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Lemma A.2 (Disjoint Decomposition of Group Conditional Risk). Let g1, . . . gN be N disjoint
groups. Then, the group conditional risk for

⋃N
k=1 gk decomposes:

L(f |
N⋃
k=1

gk) =

N∑
k=1

Pr{X ∈ gk}∑N
j=1 Pr{X ∈ gj}

L(f | gk). (9)

Proof. By definition of group conditional risk,

L(f | g) = E [ℓ(f(X), Y ) |X ∈ g] .

We first claim that L(f | g) = 1
Pr{X∈g}E [g(X)ℓ(f(X), Y )] . This follows from:

E [g(X)ℓ(f(X), Y )] = E [E [g(X)ℓ(f(X), Y ) |X ∈ g]]

= E [g(X)E [ℓ(f(X), Y ) |X ∈ g]]

= Pr{X ∈ g}E [ℓ(f(X), Y ) |X ∈ g]

= Pr{X ∈ g}L(f | g).

Using this fact, we can re-write the group conditional risk as:

L(f |
N⋃
k=1

gk) =
1

Pr{X ∈
⋃N

k=1 gk}
E

[
1

{
X ∈

N⋃
k=1

gk

}
ℓ(f(X), Y )

]
.

Because g1, . . . , gN are disjoint, we can use additivity:

=
1∑N

j=1 Pr{X ∈ gj}
E

[
N∑
k=1

gk(X)ℓ(f(X), Y )

]

=
1∑N

j=1 Pr{X ∈ gj}

N∑
k=1

E [gk(X)ℓ(f(X), Y )]

Using the same fact that Pr{X ∈ gk}L(f | gk) = E [gk(X)ℓ(f(X), Y )], we get the desired result:

=
N∑
k=1

Pr{X ∈ gk}∑N
j=1 Pr{X ∈ gj}

L(f | gk).

The next lemma is from Tosh & Hsu [2022], but we restate it here for convenience. This is a
uniform convergence result for group conditional risks. We’ll use its immediate consequence for
hierarchically structured G, Lemma A.4, to prove excess error bounds. First, we define a shattering
coefficient of a set of functions. For a class of {0, 1}-valued functions F defined over a domain X ,
the k-th shattering coefficient is given by:

Πk(F) := max
x1,...,xk∈X

|{(f(x1), . . . , f(xk)) : f ∈ F}|.

We also define ((ℓ ◦ H)thresh as the thresholded, loss-composed class for ℓ and H, which is the class
of functions

(ℓ ◦ H)thresh := {(x, y) 7→ 1{(ℓ(h(x), y))} > τ : h ∈ H, τ ∈ R}.
Now, we can restate the result for uniform convergence on group conditional risks, which is Theorem
1 from Tosh & Hsu [2022].
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Lemma A.3 (Theorem 1 in Tosh & Hsu [2022]). Let H be a hypothesis class and let G be a set of
groups. Given a dataset D of n i.i.d. examples, with probability at least 1− δ,

|L(h | g)− LD(h | g)| ≤ min

{
9

√
D

ng
, 7

√
DLD(h | g)

ng
+

16D

ng

}
, (10)

for all h ∈ H and g ∈ G, where D = 2 log(Π2n((ℓ ◦ H)thresh)Π2n(G)) + log(8/δ).

We can simplify the D term to get the following conditional uniform convergence bounds. Using
the crudest bounds on the terms in D (which will be sufficient), we immediately obtain the following
useful lemma for group conditional uniform convergence. This is the lemma we will use to prove
excess error bounds in the sequel.

Lemma A.4 (Group Conditional Uniform Convergence). Let H be a hypothesis class and let G be
a set of groups. Given a dataset D of n i.i.d. examples, with probability at least 1− δ,

|L(h|g)− LD(h|g)| ≤ 9

√
2 log(|G||H|) + log(8/δ)

ng
, (11)

for all h ∈ H and all g ∈ G. For H with VC-dimension bounded by d > 0, with probability at least
1− δ,

|L(h|g)− LD(h|g)| ≤ 9

√
2 log(|G|(4n)d) + log(8/δ)

ng
, (12)

for all h ∈ H and all g ∈ G.

A.3 MGL-Tree Algorithm

We now present MGL-Tree (Algorithm 2). This algorithm outputs a final decision tree predictor,
f̂ : X → A. Each node of the decision tree is a group g ∈ G with an associated working predictor
ĥgw : X → A. For each group g ∈ G, we’ll denote ĥg to be the ERM minimizer of group conditional
empirical risk:

ĥg := argmin
h∈H

LD(h | g) = argmin
h∈H

∑
i∈[n] g(Xi)ℓ(h(Xi), Yi)∑

i∈[n] g(Xi)
.

We construct the decision tree as follows. First, we generate the tree in the way described in Section
4 from the hierarchically structured collection of groups G. For simplicity, the root is X . In this
tree, every node g is a subset of its ancestors. We begin by initializing the root node’s working
predictor ĥXw ← ĥX , the ERM minimizer of group conditional empirical risk for all of X – this is
just standard empirical risk LD(h).

To assign working predictors ĥgw to each node, we start from the root of the tree where g = X
and visit all |G| nodes in the tree in breadth-first order. Let ĥ

pa(g)
w denote the working predictor for

the parent of node g. The main idea is to set the working predictor at node g to ĥgw ← ĥg only if its
parent is insufficient for achieving the desired margin of error ϵn(g). Otherwise, node g inherits its

working predictor from its parent: ĥgw ← ĥ
pa(g)
w . To show that Algorithm 2 is correct, the key is

to prove a “monotonicity” property: at each update operation, the algorithm does not violate any
error bounds for groups further up the tree. This is detailed formally in Algorithm 2.

18



Algorithm 2 MGL-Tree

Input:
1: D, a training dataset.
2: Collection of hierarchically structured groups G ⊆ 2X .
3: Error rates ϵn(g) ∈ (0, 1) for all g ∈ G

Output: Decision tree f̂ : X → A.
4: Order G into a tree, where g is an ancestor of g′ if g′ ⊆ g.
5: Initialize the root working predictor: ĥXw ← ĥX .
6: for each node g ∈ G \ {X} in breadth-first order do
7: Compute:

errg :=
1

|Dg|
∑

(X,Y )∈D

g(X)
(
ℓ
(
ĥgw(X), Y

)
− ℓ

(
ĥg(X), Y

))
− ϵn(g)

8: if errg ≥ 0 then

9: Set ĥgw ← ĥg.
10: else
11: Set ĥgw ← ĥ

pa(g)
w .

12: end if
13: end for
14: return f̂ : X → A, a decision tree predictor.

To evaluate using this decision tree f̂ , we simply propagate a new example X down the tree,
starting from the root, finding the “deepest” node g∗ in the tree that still contains X. We move
from a parent to a child whenever the child contains X. The final output uses the working predictor
at this “deepest” node g∗: f̂(X) := ĥg

∗
w (X).

A.4 MGL-Tree Analysis and Sample Complexity

In this section, we prove the correctness and multi-group learnability guarantees of Algorithm 2.
We need a bit of terminology to denote the change at an update operation. Let f̂old denote the
state of the decision tree before an update operation. In Algorithm 2, this corresponds to the state
of the decision tree at line 7 in each iteration of the main BFS loop. We will use f̂old extensively in
the proofs of Theorem A.6 and Theorem A.7.

We state one more obvious lemma concerning the behavior of f̂ when we choose to inherit the

parent’s working predictor, ĥ
pa(g)
w . When we do this, f̂ is functionally equivalent to f̂old on group g

and all the nodes on the path from g back up to the root.

Lemma A.5 (Behavior of f̂old). Consider any step of Algorithm 2 where we are considering
g ∈ G. Let f̂old be the decision tree at this step before updating (the state of the tree at line 7). Let
ĥg ∈ argminh∈H LD(h | g) for all g ∈ G. Then, for all X ∈ g, f̂old(X) = hg′(X) for some g′ ⊃ g
already visited by the algorithm.

Proof. This just follows by induction. For the first step of Algorithm 2, f̂old is simply h ∈
argminh∈H LD(h), the ERM predictor over all of X . Of course, g ⊂ X for any g. Assume the lemma
for all g′ ∈ G′, the set of already visited nodes. Suppose we are on step g ∈ G in our BFS. Then, if
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X ∈ g, then, by hierarchical structure and BFS, X ∈ g′ for some g ⊂ g′ because we’ve visited all
parents before their children. Therefore, f̂old uses hg′ for some g′ ⊃ g.

Lemma A.5 allows us to apply Lemma A.4, our conditional uniform convergence bound, on f̂old,
as it is functionally equivalent to some h ∈ H, our benchmark hypothesis class.

The key to Algorithm 2 is that each update operation at any node g does not make f̂ violate
the error bounds it satisfied further up the tree. We observe that, at an update iteration (when
errg ≥ 0), either we accept the (conditional) ERM predictor ĥgw ← ĥg or we inherit the parent’s

working predictor ĥgw ← ĥ
pa(g)
w . See Figure 1.

Figure 1: Let g1, the yellow node, be a group that Algorithm 2 has already dealt with. Suppose
f̂ updates on g2. We see that g1 is on the path from g2 to the root. We need to show that the
inequality for g1 is not violated after the update.

Theorem A.6 (Correctness of MGL-Tree). Let G be a hierarchically structured collection of groups,
let D = {(Xi, Yi)}ni=1 be i.i.d. training data drawn from any distribution P ∈ P(X × Y), and let
ϵn : G → (0, 1) be any error rate function. Then, Algorithm 2 run on these parameters outputs a
predictor f̂ : X → Y ′ satisfying:

LD(f̂ |g) ≤ inf
h∈H

LD(h|g) + ϵn(g), for all g ∈ G. (13)

Proof. Consider any g∗ ∈ G, which corresponds to a node in the decision tree, f̂ . We analyze the
step of the algorithm’s breadth-first search concerned with g∗ and argue that this step does not
violate any inequalities of the form (13) satisfied up until this step. This is sufficient to prove
correctness because g∗ is an arbitrary node, and the tree traversal will visit every node, so (13) will
be satisfied for all nodes in the tree.

On the current step for g∗, the algorithm can either decide to update or not. If the if-condition
is not satisfied and it does not update, then we keep f̂ ← f̂old from the previous round, and we are
done. All inequalities previously satisfied must continue to be satisfied because f̂ did not change.

Suppose, then, that the algorithm did update. Let Pg∗ := {ĝ1, . . . , ĝk} be the set of nodes on

the path from g∗ to the root of the tree, including the root. Then, for all nodes g ̸∈ Pg∗ , f̂ continues

to satisfy (13) because g ∩ g∗ = ∅, so for X ∈ g, f̂(X) = f̂old(X), as before. This is due to the
hierarchical structure – any node not on the path from g∗ back up to the root must be disjoint from
g∗.

Now, consider our final case: any ĝj ∈ Pg∗ for j ∈ [k], a node back up to the root from g∗.

Again, we are in the case where we updated, so f̂ has changed. By the hierarchical structure, if
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ĝj is further up the tree from g∗, then g∗ ⊂ ĝj . We need to show that LD(f̂ | ĝj) ≤ LD(f̂old | ĝj).
Denote g as the complement of g, and apply Lemma A.1:

LD(f̂ | ĝj) = LD(f̂ | (ĝj ∩ g∗) ∪ (ĝj ∩ g∗))

= LD(f̂ | ĝj ∩ g∗)
Pr{X ∈ ĝj ∩ g∗}

Pr{X ∈ ĝj}
+ LD(f̂ | ĝj ∩ g∗)

Pr{X ∈ (ĝj ∩ g∗)}
Pr{X ∈ ĝj}

= LD(f̂ | g∗) Pr{X ∈ g∗ | X ∈ ĝj}+ LD(f̂ | ĝj ∩ g∗) Pr{X ∈ g∗ | X ∈ ĝj}
= LD Pr{X ∈ g∗ | X ∈ ĝj}+ LD(f̂old|ĝj ∩ g∗) Pr{X ∈ g∗ | X ∈ ĝj}. (14)

The last equality is a result of how the f̂ operates as a decision tree. Observe that, on X ∈ g∗,
our updated decision tree f̂ uses h∗ ∈ argminh∈H LD(h | g∗). On X ∈ ĝj ∩ g∗, our decision tree f̂

simply operates as it did before the update: f̂(X) = f̂old(X). By definition of h∗ as ERM predictor,

LD(h
∗ | g∗) ≤ LD(f̂old | g∗), (15)

so combining (14) and (15),

LD(f̂ | ĝj) = LD(h
∗ | g∗) Pr{X ∈ g∗ | X ∈ ĝj}+ LD(f̂old | ĝj ∩ g∗) Pr{X ∈ g∗ | X ∈ ĝj}

≤ LD(f̂old | g∗) Pr{X ∈ g∗ | X ∈ ĝj}+ LD(f̂old | ĝj ∩ g∗) Pr{X ∈ g∗ | X ∈ ĝj}
= LD(f̂old | ĝj) ≤ min

h∈H
LD(h | ĝj) + ϵn(ĝj), (16)

where the final equality in (16) follows from another application of Lemma A.1. Because

LD(f̂ | ĝj) ≤ min
h∈H

LD(h | ĝj) + ϵn(ĝj), (17)

where f̂ is the updated decision list, we see that f̂ does not result in violating any of the inequalities
for the nodes ĝj in the path up to the root, finishing our proof.

We may now state and prove the main theorem for the multi-group learning guarantee of
MGL-Tree.

Theorem A.7 (MGL-Tree Sample Complexity). Suppose H is a benchmark hypothesis class, G is
a hierarchically structured collection of groups and D = {(Xi, Yi)}ni=1 is the i.i.d. training dataset
input to Algorithm 2. For finite H, if we run Algorithm 2 to completion, with

ϵn(g) := 18

√
2 log(|G||H|) + log(8/δ)

ng
,

then it will output a decision tree f̂ that, with probability 1− δ over the n training examples, satisfies:

L(f̂ | g) ≤ inf
h∈H

L(h | g) + 36

√
2 log(|G||H|) + log(8/δ)

ng
for all g ∈ G. (18)

For H with VC dimension d > 0, if we run Algorithm 2 to completion, with

ϵn(g) := 18

√
2(d+ 1) log(4n) + log(8/δ)

ng
,
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then we obtain:

L(f̂ | g) ≤ inf
h∈H

L(h | g) + 36

√
2(d+ 1) log(4n) + log(8/δ)

ng
for all g ∈ G. (19)

Proof. We will show this by induction on each iteration (visited group g) of Algorithm 2. Condition
on the event that we drew our i.i.d. dataset of size n and Equation (11) from Lemma A.4 holds.
For ease of notation, we will denote

UC(g) := 9

√
2 log(|G||H|) + log(8/δ)

ng
,

so, for all groups g ∈ G, we have, uniformly over h ∈ H:

|L(h | g)− LD(h | g)| ≤ UC(g).

Note that we choose ϵn(g) = 2UC(g). Our goal will thus be to show that, for all g ∈ G, the decision
tree f̂ satisfies

L(f̂ | g) ≤ min
h∈H

L(h | g) + 4UC(g). (20)

For the base case, we just need to show that our starting decision tree f̂ , where each node is
initialized with h0 ∈ argminh∈H LD(h), satisfies inequality (20) for g = X . Note that this is just

standard unconditional risk. This is immediately true from uniform convergence and f̂ using the
ERM predictor h0 Shalev-Shwartz & Ben-David [2014], so

L(f̂) ≤ min
h∈H

L(h) + 4UC(g).

For the inductive hypothesis, assume that we are on the step of the BFS in Algorithm 2 concerned
with g ∈ G. Denote G′ as the nodes that we already visited in our BFS, and f̂old as the decision list
before the possible update, as before. Then,

L(f̂old | g′) ≤ min
h∈H

L(h | g′) + 4UC(g′) (21)

holds for all g′ ∈ G′.
To prove the induction, we aim to show that (20) is true for our current iteration’s node g as

well, regardless of whether we updated f̂ or not. Let f̂ be the decision list after the update step of
Algorithm 2, and let ĥg ∈ argminh∈H LD(h | g). We want to show, for all h ∈ H:

L(f̂ |g)− L(h|g) ≤ 4UC(g) (22)

L(f̂ |g′)− L(h|g′) ≤ 4UC(g′), for all g′ ∈ G′. (23)

So, showing (22) and (23) are our goals for each of our two cases: whether we update or not.
These two cases depend on whether LD(f̂old|g)−LD(hg|g) ≤ ϵn(g) or LD(f̂old|g)−LD(hg|g) > ϵn(g),
the central comparison in our algorithm.

Suppose we are in the first case, when we do not update. Because errg ≤ 0, we have LD(f̂old|g)−
LD(hg|g) ≤ ϵn(g). Then, because we do not update, f̂ = f̂old, so (23) is immediately fulfilled
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because f̂ is functionally equivalent to f̂old, which, by induction satisfied the inequality already for
all g′ ∈ G′. It suffices to show (22) for this case. Fix any h ∈ H. First, with Lemma A.5, we can
apply conditional uniform convergence on f̂ = f̂old. Then,

L(f̂ | g)− L(h | g) = L(f̂old | g)− L(h | g)
≤ LD(f̂old | g)− L(h | g) + UC(g)

≤ LD(f̂old | g)− LD(h | g) + 2UC(g)

≤ LD(f̂old | g)− LD(ĥg | g) + 2UC(g)

≤ ϵn(g) + 2UC(g) = 4UC(g).

The first inequality is from Lemma A.5 and Lemma A.4. The third inequality is from the fact that
ĥg is the optimal ERM predictor conditioned on X ∈ g. This proves (22) for the first case where we

do not update f̂ .
Suppose we are in the second case. In this case, we do update and we have that LD(f̂old |

g) − LD(hg | g) > ϵn(g). In this case, f̂old is the decision tree before the update, and f̂ is the

tree after the update. Its working predictor has been updated to ĥg. Immediately, we have

LD(f̂ | g)− LD(ĥg | g) = 0 for the current node g, so, for any h ∈ H,

L(f̂ | g)− L(h | g) = L(ĥg | g)− L(h | g)
≤ LD(ĥg | g)− LD(h | g) + 2UC(g)

≤ 2UC(g) ≤ 4UC(g).

The first equality is because f̂ is functionally equivalent to ĥg on all X ∈ g, and the first inequality

comes from applying Lemma A.4 twice to get sample risk for h and ĥg. This proves (22). It suffices
to prove (23). Consider any g′ ∈ G′, the set of already visited groups. There are two types nodes in
G′: g′p, the nodes on the path back up to the root from g, and g′np, the nodes not on the path back
up to the root from g.

For any g′np, by hierarchical structure, g′np∩g = ∅. So, for all X ∈ g′np, the predictor just outputs

as it did before the update: f̂ = f̂old. Then, for any h ∈ H, we maintain the same guarantee we had
before, fulfilling (23) for all g′np:

L(f̂ | g′np)− L(h | g′np) = L(f̂old | g′np)− L(h | g′np) ≤ 4UC(g′np).

To finish the proof, it suffices to show that (23) is still fulfilled for all g′p, the nodes on a path
back up to the root from g. Again, fix some h ∈ H. Using Lemma A.2:

L(f̂ | g′p) = L(f̂ | (g′p ∩ g) ∪ (g′p − g))

=
Pr{X ∈ (g′p ∩ g)}

Pr{X ∈ g′p}
L(f̂ | g′p ∩ g) +

Pr{X ∈ (g′p − g)}
Pr{X ∈ g′p}

L(f̂ | g′p − g)

=
Pr{X ∈ g}
Pr{X ∈ g′p}

L(f̂ | g) +
Pr{X ∈ (g′p − g)}

Pr{X ∈ g′p}
L(f̂ | g′p − g).

The last equality comes from g ⊆ g′p because all nodes are contained in their ancestors. The updated

f̂ now uses ĥg for all X ∈ g. Therefore:

L(f̂ | g′p) =
Pr{X ∈ g}
Pr{X ∈ g′p}

L(ĥg | g) +
Pr{X ∈ (g′p − g)}

Pr{X ∈ g′p}
L(f̂old | g′p − g).
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Apply Lemma A.4 for conditional uniform convergence on ĥg:

L(f̂ | g′p) ≤
Pr{X ∈ g}
Pr{X ∈ g′p}

LD(ĥg | g) +
Pr{X ∈ (g′p − g)}

Pr{X ∈ g′p}
L(f̂old | g′p − g) +

Pr{X ∈ g}
Pr{X ∈ g′p}

UC(g).

Adding and subtracting ϵn(g) to use the fact that we are in the update case where LD(f̂old|g) >
LD(hg|g) + ϵn(g):

=
Pr{X ∈ g}
Pr{X ∈ g′p}

LD(hg | g) +
Pr{X ∈ g}
Pr{X ∈ g′p}

ϵn(g)

+
Pr{X ∈ (g′p − g)}

Pr{X ∈ g′p}
L(f̂old | g′p − g) +

Pr{X ∈ g}
Pr{X ∈ g′p}

UC(g)− Pr{X ∈ g}
Pr{X ∈ g′p}

ϵn(g)

≤ Pr{X ∈ g}
Pr{X ∈ g′p}

LD(f̂old | g) +
Pr{X ∈ (g′p − g)}

Pr{X ∈ g′p}
L(f̂old | g′p − g) +

Pr{X ∈ g}
Pr{X ∈ g′p}

UC(g)− Pr{X ∈ g}
Pr{X ∈ g′p}

ϵn(g).

Finally, using Lemma A.5 on f̂old on X ∈ g, applying Lemma A.4 again, and recombining terms
with Lemma A.2,

≤ Pr{X ∈ g}
Pr{X ∈ g′p}

L(f̂old | g) +
Pr{X ∈ (g′p − g)}

Pr{X ∈ g′p}
L(f̂old | g′p − g) +

2Pr{X ∈ g}
Pr{X ∈ g′p}

UC(g)− Pr{X ∈ g}
Pr{X ∈ g′p}

ϵn(g)

= L(f̂old | g′p) +
2Pr{X ∈ g}
Pr{X ∈ g′p}

UC(g)− Pr{X ∈ g}
Pr{X ∈ g′p}

ϵn(g) ≤ L(h | g′p) + 4UC(g′p).

The final line follows by our choice of ϵn(g) = 2UC(g) and the inductive hypothesis on g′p. This

shows (23) for the second case where we update f̂ , and thus completes our proof.
The proof for H with VC dimension d > 0 is identical, but with

UC(g) = 9

√
2(d+ 1) log(4n) + log(8/δ)

ng

and ϵn(g) = 2UC(g).

A.5 Proof of Theorem 4.1 and Corollary 4.2

In this section, we briefly demonstrate how Algorithm 1 in Section 4 is a special case of Algorithm 2
and prove its validity guarantee. For Algorithm 1 instantiated with ICP, we show that this follows
almost immediately from Theorem A.7 and the training conditional validity guarantee Proposition
2.1 (restated from Proposition 2a from Vovk [2012]). Recall that, by Proposition 2.1, for α, δ ∈ (0, 1)
and a dataset D = D(tr) ∪ D(cal) running ICP produces a set predictor C which satisfies

Pr [Y ̸∈ C(X) | D] ≤ α+

√
log(1/δ)

2|D(cal)|
, (24)

for newly drawn random example (X,Y ), with probability 1− δ over D. Let the training dataset
for Algorithm 2 be D(mg), an i.i.d. dataset independent from D, throughout this section. We can
now state the reduction for Theorem 4.1 and Corollary 4.2.
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Proof. Run Algorithm 2 with the following setup, and we obtain Algorithm 1. Let A = 2Y , so the
decision tree is a set predictor C : X → 2Y . Each working predictor for node g ∈ G is also a set
predictor. Let the loss function be the 0/1 miscoverge loss (Section 3.2) that checks whether Y is in
some subset of 2Y ; for an example (X,Y ) and set predictor C, the loss is:

ℓ(Y,C(X)) := 1{Y ̸∈ C(X)}. (25)

We run Algorithm 1 with D(mg). In Algorithm 1, we are also provided a benchmark hypothesis class
Ĥ = {Cg : g ∈ G} of set predictors Cg : X → 2Y that are (αg, δ)-group conditionally valid for Pg.
Taking a conditional expectation of (25), we obtain the group conditional risk

L(C | g) := E [ℓ(Y,C(X)) |X ∈ g] = Pr
[
Y ̸∈ C(X)

∣∣∣D(mg)
g , X ∈ g

]
,

which is exactly the quantity we want to upper bound to obtain group conditional validity. Apply
Threorem A.7 to immediately obtain Theorem 4.1, the ((α′

g : g ∈ G), δ)-group conditional validity
for (P,G) of the decision tree set predictor C, with:

α′
g = αg + 36

√
4 log(|G|) + log(8/δ)

|D(mg)
g |

for all g ∈ G.

This proves Theorem 4.1.
Corollary 4.2 just follows from Theorem 4.2 by constructing Ĥ from ICP applied on D =

D(tr) ∪ D(cal). Using the guarantee from Proposition 2.1, for each g ∈ G, we run ICP using Dg (the
dataset with only examples in g) at level 1 − α to obtain set predictors Cg : X → 2Y with the
guarantee:

Pr [Y ̸∈ Cg(X) | Dg, X ∈ g] ≤ α+

√
log(1/δ)

2|D(cal)
g |

. (26)

These set predictors Cg form our finite benchmark hypothesis class Ĥ = {Cg : g ∈ G}. A union
bound over G and combining with Theorem 4.1 gives us our result.
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