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Abstract

Our Problem: We study statistical and approximation properties of interpolating two layer
RelLU networks with small variational norm (R-norm).

= This norm captures the functional effect of controlling the size of network weights.

= This allows the network width to be unbounded.

= Practically motivated:
= Correspond to weight decay regularization in neural network training.
= |t has connections to implicit bias of GD in the feature learning regime.

= |t is known that neural networks trained with optimal weight decay regulartization can be
adaptive to low dimesnional structure.

Our Findings: For certain target distributions, minimum R-norm interpolants are:

1. Intrinsically multivariate functions (vary in many directions), even when there are ridge
functions (vary in only one direction) that fit the data.
2. Statistically sub-optimal in terms of generalization.
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Adaptivity

Model: Suppose the data consist of n samples (x;,¥y;)i<n ~ v € P(£2 x R), where 2 C R is a
spherically symmetric bounded domain. Let v,, denote the empirical data distribution.

Euclidean Formulation: Consider two layer ReLU neural networks, with width m, a skip connec-
tion, and parameters 0 = (a;, b;, ¢j)i<m € (R X RY x R)™,
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The R-norm of a function f : 2 — R is the minimum cost of approximating it arbitrary well by
two layer RelLU networks,
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Note that the infiimum is over both width, and network parameters.

Problem: What are properties of R-norm inductive bias for certain target distributions?

inf ||flle st f(z)=y wv-almosteverywhere (1)
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= Statistical: What is the required sample complexity (if we replace v with v,,)?
= Approximation: What do solutions to (1) look like?

Properties of R-norm

Representer Theorem: Though R-norm is not a RKHS norm, [/] showed a minimizer of the
variational problem exists with width m < n,
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Characterizing the Norm and Variational Problem: Though R-norm is a variational norm, it can
be explicitly characterized in terms of the functions itself under mild assumptions:

ly = f(@)ll20,) <€ (2)

1. Univariate Functions:
= Ford =1, [?] showed || f|lz = Hf”HLl(Q) = [o|f"(z)| d=.
= |4, ?] characterized all the solutions to the variational problem (1).
2. Multivatiate Functions:
= In general [6] showed that R-norm is related to Radon Transform of higher order
derivatives of the function.

= Characterizing even a solution to the variational problem in general is difficult.
= Recent work [5] do so for rank-one datasets using convex duality.

3. Ridge Functions:
= For functions that only vary in one direction, it reduces to the univariate case,
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Curse of dimensionality

= Without any assumption on the data we are doomed to require n = eUd) number of samples
in the in the worst case.

* Inductive biases based on certain variational norms, such as the R-norm, are believed to
offer a way around the curse of dimensionality suffered by kernel methods [1].

= For optimally chosen ¢, solutions to (2) can be adaptive to low dimensional structure and
have sample complexity bounds whose exponent depends on the intrinsic dimension |1, 8].

= But how? One may believe that R-norm inductive
bias achieves this adaptivity by favoring functions
with low dimensional structure.

= Empirical/theoretical evidence that neural networks i
with weight decay regularization can identify the low ® oo 8
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Figure 1. Image from [8]

Question: Do minimum R-norm interpolants have a low dimensional structure when such struc-
ture is present in the target distribution?

Main Results (Simplified)

Parity Distribution: Consider the target distribution (x,y) ~ v € P{£1}? x {£1}) where
x ~ Uniform{£1}% is uniformly sampled from hypercube and labeled y = y(x) = nglxj.

* Parity can be represented by ridge functions, \ g /
Vo € {il}d x(x) = g(lTa?). : 1 | — 1Tz
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Approximation

Theorem: For parity distribution v € P({£1}¢ x {£1}),
= Ridge function approximators suffer high variational norms,
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= Multidirectional functions can interpolate more efficiently,

inf {|IflR : IIx = FllLq) = 0} = ©(d)

= No solution to the variational problem with low-dimensional structure is guaranteed to exist,
even when the data distribution has low-dimensional structure.

= Results can be extended to distributions other than parity (see paper).

Generalization

Theorem: Given n samples from parity distribution v € P({il}d x {+1}),

F=agmin|fllg st f(x)=y:
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= (Upper Bound) When n = &(d>) all minima approximates parity well with high probability.
VfeF Hx—clipof = o(1)
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= (Lower Bound) When n = 6(d?) all minima are far from parity with high probability,
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= Information theoretically n = Q(d) is sufficient to learn parity (gaussian elimination).

= R-norm inductive bias is not sufficient to achieve statistically optimal sample complexity for
learning parity functions.
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Proof Ideas (Informal)

1. Approximation:
= Any ridge function that approximates parity must alternates between slopes of i@(\/c_i) at
least d times. This implies a lower bound on R-norm.
= We employ an averaging strategy that combines a collection of distinct ridge functions,
each of which has few alternations, and perfectly fits a fraction of the parity dataset.

2. Generalization:
= We use standard Rademacher complexity bounds for bounded R-norm function class.
= Using "cap construction” from [2] we produce a robust network with small Lipschitz O(3).

Experiments

Question: Do large neural networks trained on real-world datasets also attain smaller variational
norms when they aren'’t restricted to low-dimensional structures?

Convolution Layer Locally Connected Layer

= Convolutional architecture (CNN) can be thought of as a function with low dimenional
structure due to weight sharing.

= I[nspired by [3], we decouple the weights throughout different stages of training a CNN,
embed the network into a locally connected network (eLCN), and continue training the eLCN.

= Decoupling increases the parameter count and permits the model to have different
convolutional kernels in different regions, increasing the intrinsic dimensionality of the model.
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Figure 2. Black line represents the CNN performance.

= Standard training is biased in favor of networks with low variational norms.

= Lower variational norms are achieved by eLCNs (high dimensional functions) as compared to
the original CNNs (low dimensional functions).
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